How Is TB Transmitted?

To the Editor:

Unlike nontuberculous mycobacteria, Mycobacterium tuberculosis is not considered to be an environmental mycobacterium; rather, humans are considered to be the reservoir for M tuberculosis, with transmission occurring person-to-person via the respiratory route. In this issue of CHEST (see page 1094), Velayati et al reported the surprising finding of viable M tuberculosis in 10% of water samples (and 1% of soil samples) in metropolitan Tehran.

One explanation for these results would be laboratory cross-contamination. Although there were no matching genotypes for isolates from human and environmental sources to suggest potential cross-contamination, information was not provided on the proportion of all M tuberculosis isolates handled by the laboratory during the study period that were genotyped. Notably, though, all positive water cultures were from sources other than tap water, making random cross-contamination less likely.

The authors did not find matching environmental and pulmonary isolates to suggest transmission between the environment and humans. However, this lack of correlation is difficult to interpret without information on the genotyping coverage among human cases. As animals can also become infected with M tuberculosis, another consideration would be that the source of environmental M tuberculosis could be nonhuman. In this regard, data on the prevalence of M tuberculosis in domesticated and wild animals in the Tehran region would be helpful.

The authors posit that contamination of water sources with M tuberculosis may occur through expectoration. However, since both human stool and urine can harbor M tuberculosis, sewage contamination of water sources could potentially be another source. The possible connections between human TB and the environmental isolates are undiscovered—no environmental M tuberculosis isolates matched those from human pulmonary TB. One question is whether isolates from scrofula would have matched. An oral route of infection has been postulated as a source of TB in nodes draining the oropharynx. For example, human TB from Mycobacterium bovis acquired through ingestion of contaminated dairy products is associated with cervical lymphadenitis.

The finding of viable M tuberculosis in a broad survey of environmental sources, if confirmed in other settings, has several potentially important public health implications. The elegant studies that showed that M tuberculosis can be spread by aerosolized droplet nuclei did not exclude transmission through other routes. The findings of Velayati et al suggest that a broader view of possible routes of TB transmission should be reconsidered. Furthermore, immunologic effects of oral exposure to environmental sources of M tuberculosis, whether associated with infection and disease, merit consideration.

Eleanor S. Click, MD, PhD
Atlanta, GA

AFFILIATIONS: From the Division of Tuberculosis Elimination, Centers for Disease Control and Prevention.

FINANCIAL/NONFINANCIAL DISCLOSURES: The author has reported to CHEST that no potential conflicts of interest exist with any companies or organizations whose products or services may be discussed in this article.

CORRESPONDENCE TO: Eleanor S. Click, MD, PhD, Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, GA 30329; e-mail: eoc9@cdc.gov

© 2015 AMERICAN COLLEGE OF CHEST PHYSICIANS. Reproduction of this article is prohibited without written permission from the American College of Chest Physicians. See online for more details.

DOI: 10.1378/chest.14-3111

References

Response

To the Editor:

We appreciate Dr Click for providing a critique on our publication in CHEST. We agree that our article introduces a new potential route of TB transmission that needs urgent consideration.
We performed all possible procedures to avoid laboratory cross-contamination in our study. We confirmed our findings by resampling from locations with positive mycobacterial results. In addition, finding no evidence of matching genotype between human and environmental isolates from the study locations makes the risk of contamination negligible. Consequently, we would confidently confirm our findings in this study.

Regarding the role of animals in this epidemiologic cycle, we addressed the potential role of animals in transmitting Mycobacterium tuberculosis, particularly multidrug-resistant TB, to humans elsewhere. Given that Tehran is a rat-infested city, the role of the rats in contaminating the environment with M tuberculosis should be investigated. To our knowledge, the prevalence of M tuberculosis in animals has not been studied in Iran.

The contamination of water samples with sewage is very unlikely in Tehran for a couple of reasons. The water samples were mainly collected from channels that are designed to collect superficial water from streets after rains and have no connection to sewage. Besides, voiding in water channels is not culturally accepted in Iran, so the risk of direct contamination also is very unlikely. We still think that water source contamination could occur through expectoration.

Regarding TB lymphadenitis, we did not match environmental isolates with all isolates from TB lymphadenitis from Tehran. Considering we could not isolate any M tuberculosis from drinking water samples, and no one drinks channel water, at least in the study locations, the role of drinking M tuberculosis was not questioned for us. We agree this possible association should be investigated in other locations where the risk of drinking contaminated water is valid.

Finally, we agree with Dr Click that our understanding about TB transmission is evolving. In our previous studies, we showed M tuberculosis has a high biologic adaptation in response to difficult environmental conditions, including exposure to antibiotics. This ability allows M tuberculosis to stay alive and infectious in soil and water for a significant duration of time; as we showed, it remains alive in wet soil for > 9 months.

Ali Akbar Velayati, MD
Panissa Farnia, PhD
Tehran, Iran
Mehdi Mirsaeidi, MD, MPH
Chicago, IL

AFFILIATIONS: From the Mycobacteriology Research Centre (Drs Velayati and Farnia), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences; and the Division of Pulmonary and Critical Care (Dr Mirsaeidi), University of Illinois at Chicago.

FUNDING/SUPPORT: This study was supported by National Research Institute of Tuberculosis and Lung Disease of Iran. Dr Mirsaeidi was supported by the National Institutes of Health [Grant 5 T32 HL 82547-7].

FINANCIAL/NONFINANCIAL DISCLOSURES: The authors have reported to CHEST that no potential conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article.

CORRESPONDENCE TO: Mehdi Mirsaeidi, MD, MPH, Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine M/C 719, University of Illinois at Chicago, 840 S Wood St, Chicago, IL 60612-7323; e-mail: mmirsae@uic.edu

© 2015 AMERICAN COLLEGE OF CHEST PHYSICIANS. Reproduction of this article is prohibited without written permission from the American College of Chest Physicians. See online for more details.

DOI: 10.1378/chest.14-3235

Acknowledgments

Role of sponsors: The sponsors had no role in the design of the study, the collection and analysis of the data, or the preparation of the manuscript.

References