their best management is critical to the successful use of these catheters.

Edward T. H. Fysh, MBBS
Perth, WA, Australia

John M. Wrightson, MBChB
Oxford, England

Y. C. Gary Lee, MBChB, PhD, FCCP
Perth, WA, Australia

Najib M. Rahman, DPhil, MBMBCh
Oxford, England

Affiliations: From the Centre for Asthma, Allergy and Respiratory Research (Drs Fysh and Lee), School of Medicine and Pharmacology, University of Western Australia, and Department of Respiratory Medicine, Sir Charles Gairdner Hospital (Drs Fysh and Lee); and Oxford Centre for Respiratory Medicine (Drs Wrightson and Rahman), Churchill Hospital, and Oxford Biomedical Research Centre (Drs Wrightson and Rahman), University of Oxford.

Funding/Support: The authors received research funding from the State Health Research Advisory Council of the Western Australian Health Dept (to Dr Lee), the Sir Charles Gairdner Hospital project grants (to Drs Fysh and Lee), the Raine Foundation (to Dr Lee), National Health Medical Research Council (to Drs Fysh and Lee), University Postgraduate Award of the University of Western Australia (to Dr Fysh), the Oxford NIHR Biomedical Research Centre (to Drs Wrightson and Rahman), and the UK Medical Research Council (to Dr Rahman).

Financial/nonfinancial disclosures: The authors have reported to CHEST the following conflicts of interest: Drs Lee and Rahman are investigators for the TIME-2 study funded by the British Lung Foundation. The indwelling pleural catheters used in the study were provided without charge by Rocket Medical plc. None of the investigators received personal benefits from the study. Dr Lee has received an honorarium from CareFusion Corp. Dr Rahman has provided consultancy services for Rocket Medical plc. Drs Fysh and Wrightson have reported that no potential conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article.

Correspondence to: Y. C. Gary Lee, MBChB, PhD, FCCP, University Department of Medicine, G Block, 4/F, Sir Charles Gairdner Hospital, Hospital Ave, Perth, WA, 6009, Australia; e-mail: gary.lee@uwa.edu.au

© 2012 American College of Chest Physicians. Reproduction of this article is prohibited without written permission from the American College of Chest Physicians. See online for more details. DOI: 10.1378/chest.12-1357

ACKNOWLEDGMENTS

Role of sponsors: The sponsors had no role in the design of the study, the collection and analysis of the data, or in the preparation of the manuscript.

REFERENCES

Spirometry in Bronchial Asthma

Role of TB

To the Editor:

In an issue of CHEST (May 2012), Gershon et al. raised an important but often forgotten issue of spirometry for the diagnosis of bronchial asthma. Spirometry undoubtedly is the cornerstone for the diagnosis of bronchial asthma, and it is equally true that for whatever reason it remains underused throughout most of the world. There are several reasons for its underuse, which vary with country and area. In developing countries, along with the expected reasons of scarcity of physicians and technicians, nonavailability of spirometry, and other basic issues, there is one more important, but expected, factor: TB.

In developing countries like India and China, a sizeable population has past or present TB. Prevalence of TB infection is as high as 40% in India.1 Moreover TB may mimic bronchial asthma (eg, endobronchial TB may present with dyspnea and wheezing). In areas with high TB prevalence, physicians usually rule out TB in almost all patients presenting in chest clinics with any chest symptom. If spirometry is done in a case of pulmonary TB, it may infect the apparatus and spread the infection.2 Thus, as a silent policy it is considered unsafe to use spirometry without having a chest radiograph of the patient. If the radiograph findings suggest TB, which is not a rare scenario, sputum microscopy is required to rule out present active TB. This prolonged diagnostic protocol means more hospital visits and a delay in diagnosis and treatment. This delay is unacceptable when the patient is visibly in discomfort, which often is the case because patients present late in the course of disease. Understandably, physicians feel safer and more comfortable with starting treatment without spirometry than in taking a risk of the spread of infection. There is a need to develop a consensus statement regarding the use of spirometry in countries with a high TB prevalence.

Naveen Dutt, MD
Khanpur, India

Affiliations: From the Department of Respiratory Medicine, Bhagat Phool Singh Government Medical College.

Financial/nonfinancial disclosures: The author has reported to CHEST that no potential conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article.

Correspondence to: Naveen Dutt, MD, Department of Respiratory Medicine, Bhagat Phool Singh Government Medical College, Khanpur, Haryana 131305, India; e-mail: dmaveendutt@yahoo.co.in

© 2012 American College of Chest Physicians. Reproduction of this article is prohibited without written permission from the American College of Chest Physicians. See online for more details. DOI: 10.1378/chest.12-1255

REFERENCES

Response

To the Editor:

We thank Dr Dutt for his interest in our study and insightful comments. In Ontario, Canada, the incidence and prevalence of TB is relatively low, and, therefore, it was not examined as a factor associated with pulmonary function testing in our study.1 We