companies/organizations whose products or services may be discussed in this article.

Correspondence to: Saadah Alrajab, MD, Section of Pulmonary, Critical Care and Sleep Medicine, Louisiana State University-Shreveport, 1501 Kings Hwy, Shreveport, LA 71103; e-mail: sahraj@lsuhsc.edu

© 2012 American College of Chest Physicians. Reproduction of this article is prohibited without written permission from the American College of Chest Physicians (http://www.chestpubs.org/site/misc/reprints.xhtml).

DOI: 10.1378/chest.11-2603

REFERENCES

Response

To the Editor:

We thank Dr Alrajab and colleagues for their comments on our recent article in CHEST.\(^1\) Their suggestions and opinions on the key points relating to the diagnosis of pneumothorax (PNX) by ultrasonography will also benefit our research. Our responses to their comments are as follows.

First, the extent to which a Cochrane review can draw conclusions about the effects of an intervention depends on whether the data and results from the included studies are valid. For our analysis, the most valid studies would have been prospective, double-blind studies with a large sample, which would have had the same gold standard for comparison. However, there were only a few studies which complied with these criteria. All of the 20 studies we included in our analysis complied with at least seven of 10 quality of diagnostic accuracy studies tool items (shown in e-Table 1 of our article\(^1\)), and the study published in 1995 complied with nine of 10 quality of diagnostic accuracy studies tool items. The possible sources of heterogeneity across the studies were explored using metaregression analysis, which implied that heterogeneity resulted from factors other than the way in which a study was designed.

Second, in our experience and in the opinion of other experts,\(^2\) the accuracy of pleural ultrasonography (PUS) in diagnosing PNX depends on the operator’s skill. The lung point is a specific sign that allows PNX to be confirmed and the PNX volume to be determined. Furthermore, not all of the PNX diagnosed by PUS requires an invasive procedure. Only a large PNX needs emergency treatment. In these circumstances, a well-trained operator can evaluate PNX precisely with PUS. For mild to moderate PNX, clinicians can wait for the results of CT scans or chest radiographs (CXRs) before performing an invasive procedure.

Third, we indicated that PUS complements CXR rather than replaces it. Both PUS and CXR have advantages and limitations in detecting PNX. There is no conflict between these two modalities. The choice should be made depending on the specific circumstances, including available equipment, clinician ability, and patient circumstances. PUS and CXR each have a role in detecting PNX.

Sufficient training and certification of the operator are essential before performing PUS. Despite the limitations of PUS, from our analysis we believe that it is a promising alternative for the diagnosis of PNX, especially when performed by clinicians in critically ill patients.\(^3\)

Mao Zhang, MD
Wu Ding, MM
Hangzhou, China

Increased Adverse Events After Percutaneous Coronary Intervention in Patients With COPD

To the Editor:

In reference to the recent article by Enriquez et al\(^1\) (September 2011), we commend the authors for highlighting the problem of significantly lower rates of β-blocker and statin therapy given to patients with COPD. This finding suggests that patients with COPD may be undertreated for concomitant cardiovascular disease. In a similar vein, we previously reported on statin therapy in subjects undergoing evaluation for lung transplantation in whom pulmonary hemodynamic data were available and found that only 67% of subjects with angiographically proven severe coronary disease (CAD) were receiving statin therapy prior to evaluation.\(^2\) Applying a more liberal definition of CAD to include any degree of angiographically observed coronary disease, only 42% of the patients used statin therapy. Patients using β-blockers found to have severe vs any CAD on angiography was very low at 11% and 5%, respectively.

It has been demonstrated that COPD is associated with excess cardiovascular disease even after controlling for potential confounders, such as tobacco exposure.\(^3\) These studies, however, are not able to account for treatment differences, which could significantly affect the observed associations. The study by Enriquez et al\(^1\) has implications applicable both clinically and for future research design. Clinically, physicians should work to challenge the misperception that β-blockers are contraindicated in COPD. Data clearly show that cardioselective β-blockers are well tolerated in COPD\(^4\) and should not be withheld for this reason. The disparity of statin prescription is somewhat perplexing and perhaps explained by the observation of favorable lipid profiles, which may be associated with COPD.\(^5\) In terms of future research design, it is clearly imperative that studies of CAD in COPD take

Affiliations: From the Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University, School of Medicine and Research Institute of Emergency Medicine, Zhejiang University.

Financial/nonfinancial disclosures: The authors have reported to CHEST that no potential conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article.

Correspondence to: Mao Zhang, MD, Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University, School of Medicine and Research Institute of Emergency Medicine, Zhejiang University, NO.88 Jiefang Rd, Hangzhou 310009, China; e-mail: zhzl@hotmail.com

© 2012 American College of Chest Physicians. Reproduction of this article is prohibited without written permission from the American College of Chest Physicians (http://www.chestpubs.org/site/misc/reprints.xhtml).

DOI: 10.1378/chest.11-2820

REFERENCES

into consideration the possible confounding effect of potentially inadequate cardioprotective regimens given to these patients.

Robert M. Reed, MD
Steven Scharf, MD, PhD
Baltimore, MD

Affiliations: From the Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine.
Financial/nonfinancial disclosures: The authors have reported to CHEST that no potential conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article.
Correspondence to: Robert M. Reed, MD, University of Maryland Physicians, Division of Pulmonary and Critical Care Medicine, 110 S Paca St, 2nd Floor, Baltimore, MD 21201; e-mail: rreed@medicine.umaryland.edu
© 2012 American College of Chest Physicians. Reproduction of this article is prohibited without written permission from the American College of Chest Physicians (http://www.chestpubs.org/site/misc/reprints.xhtml).
DOI: 10.1378/chest.11-2613

REFERENCES

Response

To the Editor:

We appreciate the comments from Drs Reed and Scharf regarding our recent article in CHEST.1 In our analysis of >10,000 patients undergoing percutaneous coronary intervention in the National Heart, Lung, and Blood Institute's Dynamic Registry, we observed that patients with COPD were at higher risk of adverse events after percutaneous coronary intervention and less likely to receive aspirin, β-blockers, and statins at discharge, compared with those without COPD. We commend Reed and Scharf for reporting findings that also highlight the disparities in coronary artery disease therapy between those with and without COPD.2

Regarding the excess cardiovascular disease and worse outcomes among patients with COPD, we agree with Reed and Scharf that this is a complex issue with multiple potential mediators related to demographic and clinical characteristics, chronic hypoxic or systemic inflammatory processes,3 and treatment-related variables.4 For such reasons, we attempted to elucidate the relative contribution of such variables to outcomes within our study through the creation of stratified multivariate models, in which we found that demographic, angiographic, and treatment-related variables all appear to contribute to mortality, although demographic variables appear to contribute more to other outcomes evaluated.5 We concur that future studies of COPD and its association with adverse outcomes should also consider rigorous adjustment for potential confounding variables and should aim to identify factors contributing to the significant cardiovascular disease morbidity and mortality among these patients.

Questions posed by Reed and Scharf regarding physicians’ reasons for withholding guideline-recommended coronary artery disease therapies, such as statins, are very relevant and certainly worthy of further study. We agree that the lower lipid levels among patients with COPD, compared with those without COPD, could be one explanation for the decreased use of statins. Additionally, providers may be less inclined to escalate cardiac therapies because of the perception of patient frailty or because of a perception that atypical symptoms may be due to respiratory rather than cardiac causes.6 Regardless of the reasons for differences in treatment, we believe the results of our study support a greater awareness that patients with COPD represent a high-risk group, requiring focused attention after coronary revascularization for the prevention and management of adverse events.

Jonathan R. Enriquez, MD
Elizabeth M. Holper, MD, MPH
Dallas, TX

Affiliations: From the University of Texas Southwestern Medical Center (Dr Enriquez); and Medical City Hospital (Dr Holper).
Financial/nonfinancial disclosures: The authors have reported to CHEST that no potential conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article.
Correspondence to: Elizabeth Holper, MD, MPH, Medical City Hospital, 7777 Forest Lane, Ste 339, Dallas, TX 75230; e-mail: cholper@gmail.com
© 2012 American College of Chest Physicians. Reproduction of this article is prohibited without written permission from the American College of Chest Physicians (http://www.chestpubs.org/site/misc/reprints.xhtml).
DOI: 10.1378/chest.11-2914

REFERENCES

