marijuana smoking in a patient without clinical evidence of an immune deficiency. However, two aspects of this report require further discussion.

First, instead of invasive pulmonary aspergillosis (IPA), we believe the precise diagnosis should be chronic necrotizing pulmonary aspergillosis (CNPA). To start with, the patient does not show any clinical symptoms of IPA, nor are her COPD symptoms getting any more severe. The occurrence of IPA in COPD patients will intensify symptoms like shortness of breath. Next, the CT scan of her chest shows no evidence that her left upper lobe nodule is progressing any further. This suggests that the nodule is of a slow progressive nature.

In addition, the findings of the two CT scan-guided biopsies were both nondiagnostic and revealed predominantly fibrous tissue. In clinical practices, the diagnosis of CNPA commonly stands on the presence of multiple cultures that are positive for Aspergillus organisms, chest radiographs with abnormal findings, and test findings for bronchoscopy biopsy specimens that are consistent with tissue invasion.²

Last, the authors’ diagnosis rests mainly on the results of a biopsy performed with video-assisted thoracic surgery, showing castag- ing granulomas and granulomatous pleuritis, with evidence of Aspergillus species and thrombosed vessels in the center of one of the nodules. However, Yousem³ has also reported 4 of 10 persons with conditions resembling necrotizing granulomatous pneumonia centered around a central zone of infant-like necrosis of the parenchyma, resulting from angioinvasive Aspergillus. This is incredibly similar to the histopathology reported by Sakkour et al.¹

In conclusion, in contrast to IPA, CNPA is a chronic process that progresses slowly over months to years. IPA, on the other hand, is a severe and commonly fatal disease that is seen in immunocompromised patients. Therefore, we incline to believe that the diagnosis in this case should be CNPA.

Second, we totally agree with the authors in regarding marijuana smoking as the main factor for pulmonary aspergillosis in this patient. Nonetheless, we believe that the fluticasone therapy we can only take the recommended dosage of fluticasone, we believe that the fluticasone therapy with not only oral steroids, but also with inhaled steroids might promote IPA or CNPA in COPD patients.

Haijian Du, MD
Weijie Huang, PhD
Guangzhou, People’s Republic of China

Correspondence to: Haijian Du, Department of Pulmonology, General Hospital of Guangzhou Military Command, No. 111 Lnhua Rd, Guangzhou 510010, People’s Republic of China; e-mail: HJ_DU16@163.com

© 2009 American College of Chest Physicians. Reproduction of this article is prohibited without written permission from the American College of Chest Physicians (www.chestjournal.org/site/misc/reprints.xhtml). DOI: 10.1378/chest.09-0137

REFERENCES

3 Yousem SA. The histological spectrum of chronic necrotizing forms of pulmonary aspergillosis. Hum Pathol 1997; 28:650–656

Does Biofilm Formation Play a Role in Ventilator-Associated Tracheobronchitis?

To The Editor:

I enjoyed reading “Ventilator-Associated Tracheobronchitis” by Craven et al¹ in a recent issue of CHEST (February 2009). It may be useful to determine whether this condition includes biofilm formation. The authors mentioned contiguous biofilm sites including the endotracheal tube and oral cavity. Dental plaque is a form of biofilm that supports the growth of pulmonary pathogens and is a probable source of pneumonia. Oral hygiene decreases rates of ventilator-associated pneumonia in some groups.²

Pseudomonas and Staphylococcus aureus are biofilm formers.³ Biofilm colonies anchor to mucosal surfaces or foreign bodies and are composed of layers of slow-growing bacteria embedded in the glycocalyx (exopolysaccarides). The close proximity of bacteria facilitates chemical quorum sensing when the colony achieves high density, triggering the production of virulence factors and/or launching free-living bacteria to infect other sites such as the alveolae. Glycocalyx interferes with antibiotic penetration, and slow growth makes bacteria resistant to growth-dependent antibiotic killing. Killing bacteria in biofilm requires antibiotic concentrations 10 to 1,000 times that needed to kill free-living bacteria. Conceivably, topical or aerosolized antibiotics could achieve local concentrations high enough to suppress biofilm formation and avoid exposing bacteria to sub-minimum inhibitory antibiotic concentrations if the biofilm was not fully mature. Other novel therapies that can be directed toward the formation of biofilms or are capable of breaking the chemical bonds of the biofilms may become available.¹³

The exopolysaccarides in biofilm cannot be visualized by conventional light microscopy.⁴ Detection requires scanning electron or laser microscopy. Fluorescent in situ hybridization is required to identify specific bacteria.³ These techniques have demonstrated the presence of biofilm and clarified the pathophysiology of ear, nose, and throat infections, including chronic sinusitis, otitis media with effusion, and adenotonsillitis.³ Perhaps it is time to apply the same techniques to determine whether biofilm formation is part of the pathophysiology of ventilator-associated tracheobronchitis.

Paul Drinka, MD
Waupaca, WI

Correspondence

Affiliations: Dr. Drinka is affiliated with the University of Wisconsin.

Financial/nonfinancial disclosures: The author has reported to the ACCP that no significant conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article.

Correspondence to: Paul Drinka, MD, University of Wisconsin-
Unify the Evaluative Procedures and Involve Peers for Increasing Use of Guidelines in Daily Practices

To the Editor:

Recently, Mazmanian et al. have shown the impact of continuing medical education (CME) interventions for increasing the use of clinical practices guidelines (CPGs) in daily practices and illustrated the important issue of physician adherence to CPGs. In France, the main interventions intended to change physicians’ behavior and daily practice are included in the evaluation of medical practices (EMP) step. The EMP is a key feature of continuous quality improvement, and its aim is to help doctors to reflect on their own practices and enhance adherence to CPGs. Beginning in 2005, EMP has been a legal obligation, and French physicians have to continually evaluate their practice.1

Due to the development of evaluative procedures (ie, certification, accreditation of medical teams, EMP, and CME), confusion regarding who is responsible for these procedures has occurred. Many organizations are involved in the EMP (eg, hospital medical committees, specialty societies, French National Institute of Health, and private organizations), some of which are neither acknowledged nor recognized by practicing physicians.

Recently, the Ministry of Health tried to simplify EMP procedures. A first effort was made to unify EMP with the CME program. Thereafter, attempts have been made to involve medical specialty societies in the implementation of the EMP. Indeed, EMP is a “professional thing,” and the involvement of medical specialty societies in EMP is a key component of its success. The influence of medical specialty societies is probably the most important contributor to doctors’ behavioral changes. In a study2 carried out in 2005, we found that hospital physicians generally valued guidelines and hence adhered to them, according to their promoter, more than to the scientific consistency of guidelines.

Medical specialty societies were considered the most reliable promoter and were also the main vector of guideline dissemination. Indeed, physicians became aware of guidelines through their medical specialty society followed from afar by medical congresses, hospital colleagues, and medical publications. According to our results, peers and, particularly, medical specialty societies play a key role in informing doctors about medical guidelines in France.

We propose that the involvement of medical specialty societies also contributes to the success of EMP activities, as has been demonstrated in the literature. Grob3 has recommended targeting each specific kind of medical professional to achieve the best integration of CPGs and to have a real impact on clinical practices. Starting with this viewpoint, the national health agencies should integrate medical specialty societies into the EMP development process to enhance the participation of medical professionals in peer teaching activities, which are still an under-recognized source of education in the medical education continuum.

Pascal Vignally, MD, PhD
Stephanie Gentile, MD, PhD
Marc Souville, PhD
Roland Sambuc, MD, PhD
Marseille, France

Affiliations: Drs. Vignally, Gentile, Souville, and Sambuc are affiliated with the University of Aix-Marseille II.

Financial/nonfinancial disclosures: The authors have reported that no significant conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article.

Correspondence to: Pascal Vignally, MD, PhD, Department of Public Health, Faculty of Medicine, 27 Blvd Jean Moulin, Marseille 13005, France; e-mail: pascal.vignally@issat.fr

© 2009 American College of Chest Physicians. Reproduction of this article is prohibited without written permission from the American College of Chest Physicians (www.chestjournal.org/site/misc/reprints.xhtml).

DOI: 10.1378/chest.09-0836

References
5 Cate OT, Durning S. Peer teaching in medical education: twelve reasons to move from theory to practice. Med Teach 2007; 29:1–9