shown to be of no value—or even harmful—include avoidance of β-blockers in heart failure treatment, insulin for schizophrenia, vitamin K for myocardial infarction, hormone replacement therapy to prevent cardiovascular disease, flecaïnide for ventricular tachycardia, and immobilization of scaphoid bone fractures. 3

Many other examples could be mentioned.

Dr MacLaren cites the good outcome of his four patients with 2009 influenza A(H1N1), whom he supported with ECMO. One must be careful, we believe, to separate proper decision making from patient outcome. Because of the probabilistic nature of the link between decisions and outcomes, it is clear that good decisions can be followed by bad outcomes, and bad decisions followed by good outcomes.

We agree with Dr MacLaren that ECMO is easier to apply now than in the past. The ease of application, however, does not replace the need to know when, how, and in whom we can optimally use the technique. Citing the need for a multidisciplinary and expert team does little to answer this need.

We agree with Dr MacLaren that there exist “practical difficulties of conducting” randomized clinical trials. We believe that it is even more difficult to draw compelling conclusions from uncontrolled clinical experience. We recognize that this depends on the signal-to-noise ratio. It is possible that a large observed change in clinical outcome (e.g., the response of pneumococcal pneumonia to penicillin in the 1940s) could produce compelling data, but this has not been the case with ECMO in adults with respiratory failure. Finally, the following quote seems appropriate: “To safeguard against ineffective or harmful health care we need doctors who want to do the best they can for their patients, who are willing to continually question their own managements, and who have readily available sources of information about what does work.” 3

Alan H. Morris, MD, FCCP
Murray, UT
Eliotte Hirshberg, MD
Salt Lake City, UT
Russell R. Miller III, MD, MPH
Murray, UT
Kimberly D. Statler, MD
Salt Lake City, UT
R. Duncan Hite, MD, FCCP
Winston-Salem, NC

Affiliations: From the Intermountain Medical Center (Dr Morris, Hirshberg, and Miller); the Health Sciences Center, University of Utah (Drs Hirshberg and Statler); and the Wake Forest University School of Medicine (Dr Hite).

Financial/nonfinancial disclosures: The authors have reported to CHEST the following conflicts of interest: Dr Morris received grant monies from Agency for Health Care Policy and Research for the initial work. Dr Hite is a shareholder of Discover Laboratories and a member of the Data Safety and Monitoring Board, Cumberland Pharmaceuticals, 2006 to present. Drs Hirshberg, Miller, and Statler have reported to CHEST that no potential conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article.

Correspondence to: Alan H. Morris, MD, FCCP, Pulmonary/Critical Care Division, Sorenson Heart-Lung Center-6th Fl, 5121 S Cottonwood St, Murray, UT 84157-7000; e-mail: alanj.morris@imail.org

© 2011 American College of Chest Physicians. Reproduction of this article is prohibited without written permission from the American College of Chest Physicians (http://www.chestpubs.org/site/misc/reprints.xhtml).

DOI: 10.1378/chest.10-3314

References

Fluorodeoxyglucose-PET Scanning in the Diagnosis of Pleural Disease

To the Editor:

I thank Battah et al.1 for sharing an interesting case and uncommon presentation of ankylosing spondylitis in a recent issue of CHEST (October 2010). Clarification of the authors’ conclusions, however, is required regarding their assertion that fluorodeoxyglucose (FDG)-PET scans showing increased uptake in pleural disease may be reassuring, as stated in the “Clinical Pearls” section of the article.

FDG-PET scanning has been well integrated into the workup for the evaluation of the indeterminate, solitary pulmonary nodule;2,3 however, its use in guiding further testing in pleural disease remains less well defined. The general consensus for solitary pulmonary nodule management is that increased FDG uptake should guide the clinician toward a more invasive approach rather than watchful waiting in the case of an unclear clinical diagnosis. Although this guideline cannot be extrapolated to pleural-based diseases, there is increasing evidence to suggest that augmenting clinical data with FDG-PET scanning may be useful in pleural disease management.4,5

Battah et al.1 mention “the appropriate clinical setting” as a scenario in which increasing FDG uptake is reassuring enough to defer biopsy, but only a low-probability patient would meet this requirement (not necessarily this patient who was a smoker and construction worker), and even then, an increase in FDG-PET scanning may bias the clinician toward biopsy. In the absence of necessary studies to synthesize data and investigate this topic in more detail, clinicians should be aware that increasing FDG uptake in diagnostic dilemmas of the pleura is worrisome and may require further investigations, perhaps invasive, if necessary.

Viswam S. Nair, MD
Stanford, CA

Affiliations: From the Division of Pulmonary and Critical Care, Stanford University School of Medicine.

Financial/nonfinancial disclosures: The author has reported to CHEST that no potential conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article.

Correspondence to: Viswam S. Nair, MD, Division of Pulmonary and Critical Care, Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA 94305; e-mail: viswannair@stanford.edu

© 2011 American College of Chest Physicians. Reproduction of this article is prohibited without written permission from the American College of Chest Physicians (http://www.chestpubs.org/site/misc/reprints.xhtml).

DOI: 10.1378/chest.10-2754

References
2. Gould MK, Fletcher J, Iannettoni MD, et al; American College of Chest Physicians. Evaluation of patients with...
such as those produced by talc pleurodesis or due to sarcoidosis. 3, 4
including infection as well as noninfectious granulomatous disease,
that FDG-PET scan avidity has been demonstrated in a wide
sis be pursued.
enough confidence to obviate the need for an invasive procedure.
asbestos exposure it was mandatory that a firm, histologic diagno-
Clearly, in our patient with a history of tobacco use and possible
inflammation. 2 As is true for many imaging modalities, on some
scan-avid pleural lesions only denote increased metabolic activity
Spinal lesions with FDG-PET scan avidity are known to occur
lagen vascular disorders on FDG-PET scan has only rarely been
We read with great interest the case report of a 53-year-old
man with dysphagia, anorexia, and night sweats by Ferguson
and Schwarz in a recent issue of CHEST (November 2010). 1 We
believe a few issues need to be addressed after going through this
report.
Although a diagnosis of TB was confirmed on sputum cultures,
coexistence of a concomitant pneumonia (eg, silicosis in this
case) cannot be ruled out because there is a history of exposure to
the cement industry. Silicobronchitis is a well-described entity in
literature, and it is said that silicosis increases the predisposition
toward TB. 2 The parenchymal nodules on chest radiograph and
diffuse miliary pattern with mediastinal lymphadenopathy on
CT scan described in this patient can be associated with silicosis. 3
In this patient, the miliary shadows could be present because of
preexisting silicosis and right upper lobe infiltrate because of
superadded TB infection. Flexible bronchoscopy (transbronchial
lung biopsy and BAL) or, preferably, open lung biopsy might have

Response

To the Editor:

We thank Dr Nair for his pertinent comments concerning the
use of fluorodeoxyglucose (FDG)-PET scanning in the evaluation
of pleural disease. As we made clear in our description of
a case of pleural disease associated with ankylosing spondylitis
(AS) recently published in CHEST (October 2010), 1 FDG-PET
scan-avid pleural lesions only denote increased metabolic activity
within the area of interest but do not provide specific information
concerning the source of that activity, which may be neoplastic or
inflammatory. 2 As is true for many imaging modalities, on some
occasions the clinical scenario and/or radiographic appearance
are such that a specific nonmalignant diagnosis can be made with
enough confidence to obviate the need for an invasive procedure.
Clearly, in our patient with a history of tobacco use and possible
asbestos exposure it was mandatory that a firm, histologic diagno-
sis be pursued.

Nevertheless, we believe it is important to remind clinicians
that FDG-PET scan avidity has been demonstrated in a wide
variety of inflammatory disorders affecting the lungs and pleura,
including infection as well as noninfectious granulomatous disease,
such as those produced by talc pleurodesis or due to sarcoidosis. 3, 4
However, the appearance of pleural disease associated with col-
gen vascular disorders on FDG-PET scan has only rarely been
reported. Rheumatoid arthritis with FDG-PET scan-avid pleu-
ral involvement has been described in only one previous report. 5
Spinal lesions with FDG-PET scan avidity are known to occur in
patients with AS, 6 but it appears that our case is the first to
describe FDG-PET scan positivity in pleural disease due to AS.

Lee K. Brown, MD, FCCP
Albuquerque, NM
Shadi Battah, MD
Anchorage, AK
Cecilia Wu, MD
Allyson Richards, MD
Lida Crooks, MD
Michael Hartshorne, MD
Albuquerque, NM

Affiliations: From the Division of Pulmonary, Critical Care, and
Sleep Medicine, Department of Internal Medicine (Dr Brown), the
Department of Pathology (Drs Wu and Crooks), and the Depart-
ment of Radiology (Drs Richards and Hartshorne), University of
New Mexico School of Medicine; and The Alaska Hospitalist Group
(Dr Battah).

Financial/nonfinancial disclosures: The authors have reported
to CHEST the following conflicts of interest: Dr Brown cochairs
the Polysomnography Practice Advisory Committee of the New Mexico
Medical Board and serves on the New Mexico Respiratory Care Advisory
Board. He currently receives no grant or commercial funding pertinent
the subject of this article. Drs Battah, Wu, Richards, Crooks, and Hartshorne
have reported to CHEST that no potential conflicts of interest exist
any companies/organizations whose products or services may be
discussed in this article.

Correspondence to: Lee K. Brown, MD, FCCP, Department of
Internal Medicine, University of New Mexico School of
Medicine, 1101 Medical Arts Ave NE, Bldg #2, Albuquerque,
NM 87102; e-mail: lkbrown@unm.edu

© 2011 American College of Chest Physicians. Reproduction
of this article is prohibited without written permission from
the American College of Chest Physicians (http://www.chestpubs.org/
site/misc/reprints.xhtml).

DOI: 10.1378/chest.10-3290

Silicosis: Hidden Behind TB?

To the Editor:

We read with great interest the case report of a 53-year-old
man with dysphagia, anorexia, and night sweats by Ferguson
and Schwarz in a recent issue of CHEST (November 2010). 1 We
believe a few issues need to be addressed after going through this
report.

References

a 41-year-old man with fluorodeoxyglucose-avid thickening
2. Duet M, Pouchot J, Lioté F, Faraggi M. Role for positron
emission tomography in skeletal diseases. Joint Bone Spine.
3. Love C, Tomas MB, Tronco GG, Palestro CJ. FDG PET
of infection and inflammation. Radiographics. 2005;25(5):
1357-1368.
4. Alavi A, Gupta N, Alberini JL, et al. Positron emission tomog-
raphy imaging in nonmalignant thoracic disorders. Semin
5. Bagga S. Rheumatoid lung disease as seen on PET/CT scan.
6. Wendling D, Blaggoslón O, Streit G, Lehuédé G, Toussirot E,
Cardot J-C. FDG-PET/CT scan of inflammatory spondylo-
discitis lesions in ankylosing spondylitis, and short term
evolution during anti-tumour necrosis factor treatment.