Indirect challenges act by causing the release of endogenous mediators that cause the airway smooth muscle to contract and the airways to narrow. Airway sensitivity to indirect challenges is reduced or even totally inhibited by treatment with inhaled corticosteroids (ICS), so a positive response to an indirect stimulus is believed to reflect active airway inflammation. The indirect challenges commonly used in pulmonary function laboratories include exercise, eucapnic voluntary hyperpnea, hypertonic (4.5%) saline, and mannitol. Exercise was the first test to be standardized and was used to identify exercise-induced bronchoconstriction (EIB). The inhibition of EIB in young children by sodium cromoglycate led to the concept that mast cells were important very early in the onset of asthma. All of these indirect challenges are associated with the release of mast cell mediators (eg, prostaglandins, leukotrienes, and histamine). The hypertonic saline and mannitol challenges arose from the concept that EIB was caused by an increased osmolarity of the airway surface with release of mediators. These osmotic aerosols simplified testing with indirect challenges in the laboratory, improving the potential to identify currently active asthma. Although hyperresponsiveness to indirect challenges is frequently associated with a sputum eosinophilia, it is not a prerequisite because the mast cell is the most important source of mediators. The mechanism for ICS reducing hyperresponsiveness to indirect challenges likely involves both mast cells and eosinophils. Indirect challenges are appropriate to inform further on both the pathogenesis of asthma and the role of antiinflammatory agents in its treatment.
neural pathway. Most stimuli that provoke an attack of asthma, such as sulfur dioxide, which are believed to act via a mast cell, and agents such as sodium metabisulphite and adenosine monophosphate (AMP), which acts via the available for routine challenge testing include adenosine monophosphate (AMP) [Fig 1], which acts via a neural pathway. Most stimuli that provoke an attack of asthma in daily life do so indirectly. Medications used to treat asthma and exercise-induced bronchoconstriction (EIB) frequently normalize the response to an indirect challenge. In 2007, the indirect challenges of exercise and mannitol were included in the Global Initiative for Asthma (GINA) guidelines for establishing a diagnosis of asthma.

Exercise as a Test of Bronchial Hyperresponsiveness

Exercise was the first indirect challenge test to be standardized. It was developed because the mast cell-stabilizing drug sodium cromoglycate (SCG) could not be evaluated for asthma using either a histamine or a methacholine challenge. Allergen, the indirect challenge being used at the time, was considered inappropriate because of its potential to cause a late asthmatic response. Exercise is a common stimulus for provoking bronchoconstriction, and guidelines usually include exercise tolerance as an indicator of severity and control of asthma. EIB is usually identified as either a 10% or 15% fall in FEV₁ after 6 to 8 min of vigorous exercise in a dry environment. Many pharmaceutic companies seek an indication for their drug to prevent EIB, so an exercise challenge test is likely to remain in demand. Exercise is the most common cause of an attack of asthma in children, and the severity of attack increases, with increasing numbers of attacks of wheezing per year. EIB is an early sign of bronchial hyperresponsiveness (BHR) in children and EIB is one of the last signs to go with treatment with inhaled corticosteroids (ICS).

EIB is associated with increased urinary excretion of mast cell mediators, including prostaglandin D₂ (PGD₂) [measured as the metabolite 9α,11ß-prostaglandin F₁] leukotriene E₄ (LTE₄), and histamine. These same mediators have been identified in sputum, and the concentrations were reduced by acute premedication with a combination of montelukast and loratadine. In addition to mast cells, EIB is associated with sputum eosinophilia, and EIB severity is reduced in concert with a reduction in eosinophils after chronic treatment with ICS. However, a sputum eosinophilia is not a prerequisite for EIB. EIB was also inhibited in the majority of children following acute premedication with 1,000 µg fluticasone 4 h before exercise.

Although exercise is a natural stimulus for demonstrating BHR, and EIB has a high positive predictive value for presence of asthma, it is often difficult to identify EIB in the laboratory. The type of exercise is usually limited, and neither cycling nor running exercise is relevant to the subject who complains of symptoms after swimming, rowing, skiing, or skating. The inspired air needs to be “dry” and delivered up to a very high flow rate (>100 L/min), and the intensity of exercise needs to be vigorous (85%-95% maximum heart rate). To overcome these problems, surrogate tests were developed to identify BHR consistent with EIB.

Surrogates for Identifying BHR to Inflammatory Mediators of EIB

The EVH test breathing dry air (~5% CO₂, 21% oxygen, balance nitrogen) for 6 min at a ventilation target of 30 x FEV₁ was initially standardized to evaluate army recruits for asthma and later to identify EIB in elite athletes. Field exercise at 2°C was compared with EVH in the laboratory at 19.4°C and responses were found to be equivalent for most winter athletes. EVH can provoke severe falls in FEV₁, so its use is confined to evaluate those who regularly exercise at high intensities. The same mediators associated with exercise and EIB were found after 6 min of
EVH. The response to EVH is also reduced by treatment with ICS. The mediator release, particularly PGD$_2$, and the airway response were both inhibited following 1,500 µg of beclomethasone given 4 h before EVH challenge.

The hypertonic (4.5%) saline test was developed to investigate the hypothesis that EIB was caused by a transient increase in osmolarity of the airway surface liquid as a consequence of humidifying large volumes of air during exercise. The aerosol is generated using a high-output ultrasonic nebulizer and delivered for progressively increasing intervals (0.5, 1, 2, 4, 8 min). A positive response, originally defined as a 20% fall in FEV$_1$, was reduced to 15% after large numbers of healthy subjects had been studied. Subjects with asthma were similarly sensitive to 4.5% saline and EVH. Sensitivity to 4.5% saline was expressed as the provocative dose of saline inducing a 15% or 20% fall in FEV$_1$ (PD$_{15}$, PD$_{20}$, respectively). Children who had a positive response to 4.5% saline (PD$_{20}$) were 4.26 times more likely to have EIB and 6.96 times more likely to have current wheeze than those who had a negative response. The sensitivity (PD$_{20}$) to 4.5% saline was reduced acutely after 40 mg SCG to 2.76 mL to 16.7 mL after 24 to 56 days of treatment with budesonide 1,000 µg/d. There was a significant correlation between the fold change in PD$_{20}$ for SCG and budesonide ($r = 0.88$, $P < .01$).

The hypertonic saline challenge had an advantage over exercise and EVH in that sputum could be collected both in adults and children at the same time as measuring BHR. The sensitivity to 4.5% saline (PD$_{20}$) after 6 weeks of ICS was related to the percentage of mast cells in the airway epithelium ($r = -0.71$, $P < .05$) and to the percentage of sputum eosinophils reflecting the airway lumen ($r = -0.63$, $P < .05$). Asthma duration was related to the epithelial mast cell count ($r = 0.50$). The acute effect of 2,400 µg of budesonide was investigated in another study by the same authors, and there was a 2.2-fold shift (95% CI, 1.45-3.33) in the PD$_{20}$ after 6 h. Sputum eosinophils, but not mast cells, were significantly different after this acute treatment with ICS.

As with EVH, the same mediators associated with exercise have been measured in response to hypertonic saline.

The mannitol challenge arose from the 4.5% saline challenge and was developed as a point-of-need test requiring no special preparation or clean-up time. Mannitol was selected as the osmotic agent as it was generally regarded as a safe molecule for use in both adults and children. Mannitol had suitable properties for encapsulation as a powder and could be delivered through a standard dry-powder inhaler. Mannitol had been shown in vitro to stimulate release of histamine from human lung mast cells, and this release was enhanced in the presence of anti-IgE.

The mannitol dry powder is delivered in progressively increasing doses (0, 5, 10, 20, 40, 80, 160, 160, 160 mg), with FEV$_1$ measured 1 min after each dose. A positive response is a 15% fall in FEV$_1$ at a total cumulative dose of ≤635 mg or a 10% fall in FEV$_1$ from baseline between doses. Sensitivity to mannitol is expressed as the PD$_{15}$ (mg) and reactivity as the response dose ratio (ie, the final % fall in FEV$_1$ divided by the total cumulative dose to induce that % fall in FEV$_1$). The mannitol test has regulatory approval in Australia and 18 countries in Europe and Asia and provides the opportunity for a global standard operating procedure for an indirect challenge. Mannitol as a stimulus acts as a surrogate for exercise, eucapnic hyperpnea, and 4.5% saline.

Mannitol shares many of the same characteristics of adenosine monophosphate challenge, and the profile of mediators and the effect of pharmacologic agents is similar.

In the original phase 3 study on safety and efficacy, there was also good concordance between responsiveness to 4.5% saline and mannitol in subjects with asthma and healthy subjects. In people with signs and symptoms of asthma, but without a definite diagnosis, mannitol had a similar sensitivity and specificity as methacholine (16 mg/mL) for identifying a physician diagnosis of asthma and EIB. However, concordance between different test results in these subjects was not as high as the groups with known asthma or healthy subjects.

Mannitol was shown to release PGD$_2$, LTE$_4$, and histamine from cord blood-derived human mast cells and leukotrienes from eosinophils in vitro. Given by inhalation, mannitol is associated with release of PGD$_2$ and LTE$_4$ in subjects with asthma and to a lesser extent in healthy subjects. The release of PGD$_2$, but not LTE$_4$, is inhibited by SCG and efomotecol (Fig 2). The consistent finding of mast cell mediators in response to an indirect challenge is in keeping with the current thinking that asthma is a mast cell myositis. The release of mediators from inflammatory cells in association with a measure of BHR gives more information than a test of fraction of exhaled nitric oxide (FeNO), which appears to be a reflection of atopy and BHR independent of the diagnosis of asthma.

BHR to mannitol expressed as PD$_{15}$ is related to the percentage of sputum eosinophils in patients with asthma not taking ICS. A positive response to mannitol can occur, however, in the absence of a significant sputum eosinophilia. The reason for this is that the primary mediator for mannitol response is PGD$_2$, which is of mast cell origin. The resolution of BHR to mannitol over weeks is likely to be associated...
Airway Hyperresponsiveness in Asthma

A negative mannitol test result in a person not taking treatment can be interpreted as the person being unlikely to have currently active asthma or, if they do, it is only mild. For a person suspected of having asthma on the basis of symptoms, a negative test to mannitol may be a sign to investigate other possible causes of the symptoms, such as obesity and/or gastroesophageal reflux.

For a person with symptoms but a negative test to mannitol, there may be an insufficient number of inflammatory cells or insufficient concentration of mediators and/or the person does not have BHR to those mediators. Some 30% of subjects with mild EIB are not identified with a mannitol test or a methacholine test. A negative mannitol test result indicates a “missing” component (ie, either a bronchial smooth muscle unresponsive to the endogenously released mediators, as may occur in nonasthmatic eosinophilic bronchitis, or insufficient numbers of inflammatory cells, as may occur in a person treated with ICS). Backtitration of ICS dose is likely to reveal the lowest dose that controls BHR to the endogenous mediators. If no BHR returns, then the subject does not have currently active asthma and an exacerbation is unlikely.

A negative mannitol test result in a person not taking treatment can be interpreted as the person being unlikely to have currently active asthma or, if they do, it is only mild. For a person suspected of having asthma on the basis of symptoms, a negative test to mannitol may be a sign to investigate other possible causes of the symptoms, such as obesity and/or gastroesophageal reflux.

For a person with symptoms but a negative test to mannitol, there may be an insufficient number of inflammatory cells or insufficient concentration of mediators and/or the person does not have BHR to those mediators. Some 30% of subjects with mild EIB are not identified with a mannitol test or a methacholine test. An athlete with a positive test result to methacholine but a negative test result to mannitol has BHR but may not have active airway inflammation or significant EIB. Cross-country skiers are good examples of this type of subject. The BHR in this case may be a sign of airway injury due to conditioning excessive exercise.

Interpretation of a Mannitol Test Result

Mannitol is used to assess BHR to aid in the diagnosis of asthma. A positive test result to mannitol is consistent with the presence of inflammatory cells (eg, eosinophils and/or mast cells) and their mediators (eg, prostaglandins, leukotrienes, and histamine). Therefore, mannitol is most useful as a test to confirm a diagnosis of currently active asthma in a treated or untreated subject. This gives it an advantage over methacholine. Methacholine is also indicated for the diagnosis of BHR however, its usefulness in clinical practice is in a negative test result ruling out asthma rather than a positive result confirming a diagnosis of asthma.

Although the majority of subjects with mannitol hyperresponsiveness have abnormal FeNO > 22 ppb, sputum eosinophilia (>1%), atopy, and BHR to methacholine, this is not always the case. Hyperresponsiveness to mannitol has been documented in those with a low FeNO, with low percentage of eosinophils in sputum, in those who are nonatopic, and in those without BHR to methacholine.

A negative mannitol test result indicates a “missing” component (ie, either a bronchial smooth muscle unresponsive to the endogenously released mediators, as may occur in nonasthmatic eosinophilic bronchitis, or insufficient numbers of inflammatory cells, as may occur in a person treated with ICS). Backtitration of ICS dose is likely to reveal the lowest dose that controls BHR to the endogenous mediators. If no BHR returns, then the subject does not have currently active asthma and an exacerbation is unlikely.

A negative mannitol test result in a person not taking treatment can be interpreted as the person being unlikely to have currently active asthma or, if they do, it is only mild. For a person suspected of having asthma on the basis of symptoms, a negative test to mannitol may be a sign to investigate other possible causes of the symptoms, such as obesity and/or gastroesophageal reflux.

For a person with symptoms but a negative test to mannitol, there may be an insufficient number of inflammatory cells or insufficient concentration of mediators and/or the person does not have BHR to those mediators. Some 30% of subjects with mild EIB are not identified with a mannitol test or a methacholine test.

An athlete with a positive test result to methacholine but a negative test result to mannitol has BHR but may not have active airway inflammation or significant EIB. Cross-country skiers are good examples of this type of subject. The BHR in this case may be a sign of airway injury due to conditioning excessive exercise.
amounts of air in unfavorable environments.

The inflammation may be a neutrophilia rather than an eosinophilia and reflect airway dehydration. The BHR may not be responsive to treatment with steroids or leukotrienes and usually resolves with cessation of training.

In conclusion, indirect challenge tests have clinical usefulness in identifying BHR that is consistent with airway inflammation responsive to treatment with ICS and with acute administration of mast cell-stabilizing agents. Agents such as mannitol are known to release mediators from both mast cells and eosinophils. In this respect, a mannitol challenge test provides the opportunity for both diagnosis and ongoing assessment of active airway inflammation that may affect both.

ACKNOWLEDGMENTS

Financial/nonfinancial disclosures: The author has reported to CHEST the following conflicts of interest: Dr Anderson is the inventor of the mannitol test. The patent is owned by her employer, Sydney South West Area Health Service (SSWAHS). SSWAHS invoiced Pharmaxis for her time until March 2009. She has not received monies from Pharmaxis other than to cover traveling expenses. Since March 2009, she has received consulting fees. She owns shares in Pharmaxis that she purchased herself. She does not own any options. She receives a share of 10% of the royalties paid to SSWAHS. She has acted in an honorary capacity on the Scientific Advisory Board of Pharmaxis. She has spoken for Merck and for Nycomed in the last 3 years, for which she has received honoraria.

REFERENCES

www.chestpubs.org

