Response

To the Editor:

Regarding our recent article in CHEST (November 2009), the hemoglobin (Hb) of the subjects with anorexia was 13 ± 1 g/dL. The diffusing capacity of lung for carbon monoxide (DLCO) values of subjects with anorexia (and controls) were always corrected, according to the following equation proposed by Cotes et al: DLCO (corrected) = DLCO (observed) × (10.2 × [Hb]/1.7 × [Hb]). We are very sorry that no potential conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article.

Dr Johnson made the same mistake referring to a paper by Dr Plummer in a previously published letter to the editor in CHEST. There are no doubts that DLCO and the diffusing coefficient of lung for carbon monoxide (KCO) change with VA in opposite and different ways and that these changes are relevant for interpretation of gas transfer in patients with low lung volumes. We are very sorry about making such a mistake in the manuscript. On the other hand, Dr Johnson made the same mistake referring to a paper by Dr Plummer in a previously published letter to the editor in CHEST.

There are no doubts that DLCO and the diffusing coefficient of lung for carbon monoxide (KCO) change with VA in opposite and different ways and that these changes are relevant for interpretation of gas transfer in patients with low lung volumes. We are very sorry about making such a mistake in the manuscript. On the other hand, Dr Johnson made the same mistake referring to a paper by Dr Plummer in a previously published letter to the editor in CHEST.

We used the European Community for Steel and Coal equations to give the percent predicted of DLCO and KCO, and we agree that those equations seem less consistent for KCO. This applies, of course, for both groups (controls and subjects with anorexia).

By using the formula suggested by Dr Johnson for calculating predicted KCO, actual KCO amounted to 76 ± 18% predicted for subjects with anorexia and 92 ± 11% predicted for controls, nearly equal to DLCO (as percent predicted) for both groups. Therefore, the presentation of our data could be criticized for KCO in terms of percent predicted, but this does not influence the difference in KCO between subjects with anorexia and matched controls that remains unchanged.

Giovanni Gardenghi, MD
Claudio Tantucci, MD
Brescia, Italy

Affiliations: From the Department of Medical and Surgical Sciences, University of Brescia.
Financial/nonfinancial disclosures: The authors have reported to CHEST that no potential conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article.

Correspondence to: Claudio Tantucci, MD, 1° Medicina, Spedali Civili, Piazzale Spedali Civili, 1, 25123 Brescia, Italy; e-mail: tantucci@med.unibs.it

© 2010 American College of Chest Physicians.

References

Morning Rounds Becoming Mourning Rounds?

To the Editor:

In their elaborate study, Afessa et al (December 2009) suggest a relationship between ICU mortality and admission during morning rounds (8:00 AM-11:00 AM). A relatively small number of the patients (7.2%) were admitted during round time. However, these patients differed from the average ICU admission: They had a higher severity of illness, were less likely to be postoperative, and were more frequently admitted to the medical ICU.

Based on the standardized mortality ratio (SMR), which is used to compare observed mortality with predicted mortality, the authors conclude that mortality rate during morning rounds is higher than predicted mortality rate. They pose the question whether patient care during round times falls short. We also work at a mixed ICU with 24/7 coverage of inhouse intensivists/fellows and have rounds from 11:00 AM to 1:00 PM. We recognize this type of patient admitted early in the morning, but we do not think that they get...
insufficient care once admitted at the ICU. These are usually patients already staying at the (internal) ward and deteriorating during the night. We do not think the SMR is developed to predict mortality of these patients; the Acute Physiology and Chronic Health Evaluation III prognostic scoring is not validated for this particular sample of the whole population. The observed mortality may simply be higher, because, as Afessa et al.1 indeed state, these patients are more severely ill and because their admission to the ICU has been delayed. We believe that recognizing these patients earlier in the night is more important than trying to change ICU practices that already appear to be of a high standard.3

Jack J. Ligtenberg, MD
Jan G. Zijlstra, MD
Groningen, The Netherlands

Response

To the Editor:

We thank Dr Ligtenberg and colleagues for their comments regarding our recent article in CHEST (December 2009)1 that addressed the association between ICU admission during morning round time and mortality. Our article raised a concern about the possibility of suboptimal patient care during morning rounds. Ligtenberg and colleagues believe that the delay in appropriate care prior to ICU admission, rather than suboptimal ICU care, may be the main factor adversely affecting the outcome of patients admitted to ICU during round times. They highlight the importance of early recognition of patients who are deteriorating in the regular hospital ward.

There are several factors that influence the outcome of hospitalized patients. We agree with Ligtenberg and colleagues that delays in the recognition of critical illness and in timely intervention are likely to increase the mortality of the critically ill. Such delays may occur at both the regular ward and ICU levels. In our study, we adjusted the mortality rates for the severity of illness measured by the Acute Physiology, Age, and Chronic Health Evaluation (APACHE) III prognostic system.2 Although far from perfect, the APACHE III prognostic system includes the patients’ location before ICU admission, a measure of lead time bias, as one of the predictor variables.2,3 Our study findings highlight the opportunities that exist to improve the outcome of patients admitted during morning round time. These opportunities are likely to exist in both the ICUs and regular wards. We believe the appropriate recognition and triage of patients likely to deteriorate, use of rapid response teams, ensuring optimal supervision in both hospital floors and the ICUs, and reorganizing teaching and patient rounds in ways that do not compromise patient care will improve patient outcome. These interventions require customization to the specific ICU and medical center needs.

Bekele Afessa, MD, FCCP
Ognjen Gajic, MD, FCCP
Rochester, MN

REFERENCES


Affiliations: From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic College of Medicine.

Financial/nonfinancial disclosures: The authors have reported that no potential conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article.

Correspondence to: Bekele Afessa, MD, FCCP. Division of Pulmonary and Critical Care, Mayo Clinic, 200 First St SW, Rochester, MN 55905; e-mail: afessa.bekele@mayo.edu

© 2010 American College of Chest Physicians. Reproduction of this article is prohibited without written permission from the American College of Chest Physicians (www.chestpubs.org/site/misc/reprints.xhtml).

DOI: 10.1378/chest.10-0007

Affiliations: From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic College of Medicine.

Financial/nonfinancial disclosures: The authors have reported that no potential conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article.

Correspondence to: Bekele Afessa, MD, FCCP. Division of Pulmonary and Critical Care, Mayo Clinic, 200 First St SW, Rochester, MN 55905; e-mail: afessa.bekele@mayo.edu

© 2010 American College of Chest Physicians. Reproduction of this article is prohibited without written permission from the American College of Chest Physicians (www.chestpubs.org/site/misc/reprints.xhtml).

DOI: 10.1378/chest.10-0007

REFERENCES