Overview of Common Causes of Chronic Cough
ACCP Evidence-Based Clinical Practice Guidelines

Melvin R. Pratter, MD, FCCP

Objective: To review the literature on the most common causes of chronic cough.

Methods: MEDLINE was searched (through May 2004) for studies published in the English language since 1980 on human subjects using the medical subject heading terms “cough,” “causes of cough,” and “etiology of cough.” Case series and prospective descriptive clinical trials were selected for review. Also obtained were any references from these studies that were pertinent to the topic.

Results: Upper airway cough syndrome (UACS) due to a variety of rhinosinus conditions, previously referred to as postnasal drip syndrome, asthma, nonasthmatic eosinophilic bronchitis (NAEB), and gastroesophageal reflux disease (GERD) are the most common causes of chronic cough. Each of these diagnoses may be present alone or in combination and may be clinically silent apart from the cough itself.

Conclusion: In the absence of evidence for the presence of another disorder, an approach focused on detecting the presence of UACS, asthma, NAEB, or GERD, alone or in combination, is likely to have a far higher yield than routinely searching for relatively uncommon or obscure diagnoses.

(CHEST 2006; 129:59S–62S)

Key words: asthma; chronic cough; gastroesophageal reflux; nonasthmatic eosinophilic bronchitis; postnasal drip syndrome; upper airway cough syndrome

Abbreviations: ACE = angiotensin-converting enzyme; GERD = gastroesophageal reflux disease; NAEB = nonasthmatic eosinophilic bronchitis; PNDS = postnasal drip syndrome; UACS = upper airway cough syndrome

During the past 25 years, the foundation for clinical research into the question of what are the most common causes of chronic cough has been based on a hypothesis set forth in a comprehensive review article published in 1977. In that publication, it was postulated that because there were a relatively small number of known anatomic locations for afferent cough receptors and nerves that it logically followed that there were a definable number of diseases or conditions that could stimulate these sites and result in chronic or persistent cough. The subsequent findings from various descriptive studies in the literature that have looked at populations of patients seeking medical attention for a primary complaint of cough have in fact corroborated this spectrum of conditions as initially postulated. This body of literature has also defined the relative frequency with which these etiologies of cough occur, the typical manifestations, the value of various diagnostic tests, and the likely responses to treatment. A summary of the main studies is presented in Table 1. Supplementing these studies have been reports that have focused on the specific mechanisms, manifestations, and response to treatment for each of the specific causes of cough delineated in the broader studies. In preparing this section, MEDLINE was searched (through May 2004) for studies published in the English language since 1980 on human subjects using the medical subject heading terms “cough,” “causes of cough,” and “etiology of cough.” Case series and prospective descriptive clinical trials were selected for review. Also, any references from these studies that were pertinent to the topic were obtained.
The composite picture has been remarkably consistent. In a relatively small subset of patients with chronic cough who were seeking medical attention,2–4 either current cigarette smoking or the use of an angiotensin-converting enzyme (ACE) inhibitor have proven to be the cause of the cough. In the vast majority of the remaining patients, the following three dominant etiologies have emerged to explain the causes of chronic cough: upper airway cough syndrome (UACS) due to a variety of rhinosinus conditions, which was previously referred to as postnasal drip syndrome (PNDS); asthma; and gastroesophageal reflux disease (GERD).2–6 In four prospective studies2–5 of chronic cough in the United States to date have been able to define the etiology in up to 100% of cases without reporting a single diagnosis of PNDS. Nevertheless, the medical history is important in terms of whether the patient is taking an ACE inhibitor, is or has been a smoker, or lives or has been in a geographic area where tuberculosis or certain fungal diseases are endemic. In addition, the medical history is important as to whether there is any previous history of cancer, tuberculosis, or AIDS, or whether the patient has any systemic symptoms of fever, sweats, or weight loss.

It is still important to recognize, however, that there are a number of other conditions, although much less common on average, that still account for a significant number of patients with “postinfectious” cough (performed in the United States) described a diagnostic yield without using this category. The implication is that most of the cases of postinfectious cough, other series2–4–7 were able to reach a high diagnostic yield without using this category. The implication is that most of the cases of postinfectious cough out to be coughing due to UACS, asthma, GERD, or some combination of these diagnoses.10 Nevertheless, the medical history is important in terms of whether the patient is taking an ACE inhibitor, is or has been a smoker, or lives or has been in a geographic area where tuberculosis or certain fungal diseases are endemic. In addition, the medical history is important as to whether there is any previous history of cancer, tuberculosis, or AIDS, or whether the patient has any systemic symptoms of fever, sweats, or weight loss.

A number of large studies2–5 of chronic cough in the United States to date have been able to define the etiology in up to 100% of cases without reporting a single diagnosis of NAEB. Nevertheless, a diagnosis of NAEB should be considered early in the diagnostic evaluation in that its presence can be reliably determined by properly performed staining of induced sputum for eosinophils, and by the fact that it will predictably respond to (inhaled) corticosteroid therapy.

Whereas one series6 of patients with chronic cough (performed in the United States) described a significant number of patients with “postinfectious” cough, other series2–4–7 were able to reach a high diagnostic yield without using this category. The implication is that most of the cases of postinfectious cough...
cough had as their pathophysiology persistent UACS, transient bronchial hyperresponsiveness, or prolonged airway inflammation that resolved as diagnostic/therapeutic studies were being pursued. A subset of “postinfectious cough,” due to Bordetella pertussis, is another entity that has not been described at all in many series of patients15–17 with chronic cough, but which may be etiologic in a localized cluster of patients with chronic cough as part of a localized epidemic. Or, it may be pathophysiologically involved in perpetuating chronic cough by provoking GER. Patients with bronchiectasis from a variety of causes, such as interstitial lung diseases, endobronchial abnormalities (eg, tumors, tuberculosis, sarcoidosis, or retained sutures), isolated supplicative lower airway infection, congestive heart failure, thyroid disease, habitual or psychogenic cough, neuromuscular disorders, or a mediastinal mass, will occasionally present with chronic cough as the major manifestation.

In summary, the most common causes of chronic cough are UACS due to a variety of rhinosinus conditions, asthma, and GERD. Each of these diagnoses may be present alone or in combination and may be clinically silent apart from the cough itself. While there are a number of other conditions that can result in chronic cough, in the absence of evidence suggesting the presence of one of these other disorders, an approach strongly focused on initially detecting the presence of UACS, asthma, or GERD, alone or in combination, is likely to have a far higher yield than routinely searching for relatively uncommon or obscure diagnoses. The one exception to this is that NAEB may be more important than has often been recognized, is relatively easy to diagnose in laboratories set up to do the rigorous analysis and treatment, and therefore should also be considered early in the diagnostic evaluation.

Summary of Recommendations

1. In patients with chronic cough and a normal chest roentgenogram finding who are nonsmokers and are not receiving therapy with an ACE inhibitor, the diagnostic approach should focus on the detection and treatment of UACS (formerly called PNDS), asthma, NAEB, or GERD, alone or in combination. This approach is most likely to result in a high rate of success in achieving cough resolution. Level of evidence, low; benefit, substantial; grade of recommendation, B

2. In all patients with chronic cough, regardless of clinical signs or symptoms, because UACS (formerly called PNDS), asthma, and GERD each may present only with no other associated clinical findings (ie, “silent PNDS,” “cough variant asthma,” and “silent GERD”), each of these diagnoses must be considered. Level of evidence, low; benefit, substantial; grade of recommendation, B

3. In patients with chronic cough, neither the patient’s description of his or her cough in terms of its character or timing, nor the presence or absence of sputum production, should be used to rule in or rule out a diagnosis or to determine the clinical approach. Level of evidence, low; benefit, substantial; grade of recommendation, B

References

14 Ayik SO, Basoglu OK, Erdinc M, et al. Eosinophilic bronchi-
tis as a cause of chronic cough. Respir Med 2003; 97:695–701
15 Birkebaek NH, Kristiansen M, Seefeldt T, et al. Bordetella
29:1239–1242
16 Antico A, Fabozzi F, Scipietti C. Pertussis in adults: a study in
an Italian population with chronic cough. Monaldi Arch Chest
Dis 2002; 57:247–252
17 Hallander HO, Gnarpe J, Gnarpe H, et al. Bordetella pertus-
sis, Bordetella parapertussis, Mycoplasma pneumoniae, Chla-
mydia pneumoniae and persistent cough in children. Scand
J Infect Dis 1999; 31:281–286
18 Poe RH, Israel RH, Utell MJ, et al. Chronic cough: bron-
choscopy or pulmonary function testing? Am Rev Respir Dis
1982; 126:160–162
19 Puolijoki H, Lahdensuo A. Causes of prolonged cough in
20 McGarvey LP, Heaney LG, Lawson JT, et al. Evaluation and
outcome of patients with chronic non-productive cough using
743
21 O’Connell F, Thomas VE, Pride NB, et al. Capsaicin cough
sensitivity decreases with successful treatment of chronic
cough. Am J Respir Crit Care Med 1994; 150:374–380