Detection of Hypoventilation

To the Editor:

The study by Fu et al (November 2004)1 documents well that supplemental oxygen impairs the detection of hypoventilation by pulse oximetry, as discussed in the accompanying editorial by Demers.2 We regularly perform overnight oximetry on inpatients to screen for sleep apnea/hypopnea and find that the results are very insensitive if performed using supplemental oxygen. Therefore, we perform overnight oximetry either using room air or, if the baseline awake oxygen saturation level is <90%, using only enough oxygen to bring the awake saturation to approximately 90%.

Fortunately, it is now possible to directly assess hypoventilation using continuous transcutaneous carbon dioxide tension monitoring.3 We now routinely monitor transcutaneous carbon dioxide pressure in patients who are at high risk for hypoventilation in our ventilator weaning program. We find monitoring to be very helpful during the initial tracheotomy using a mask or during overnight periods when the patient is not receiving ventilation, as well as during bronchoscopies. The advantages of monitoring cutaneous carbon dioxide tension over monitoring with end-tidal carbon dioxide tension, which we also use, include allowing continuous measurement, not requiring deep exhalation, and making accurate measurements in patients with high dead space ventilation.

The device (CO-OXYSYS Monitor, SenTec AG; Therwil, Switzerland) has been used in Europe4,5 and is now available in the United States (Aspen Medical Products Inc; Irvine, CA). The monitor allows us to closely follow transcutaneous carbon dioxide pressure using a small probe that clips on the ear lobe. It usually takes about 5 min to equilibrate and then tracks carbon dioxide pressure closely, along with oxygen saturation.

Douglas C. Johnson, MD
Boston, MA

References

Aging and Induced-Sputum Cells

To the Editor:

We read with interest the article by Thomas et al1 (December 2004) on the influence of age on induced sputum in normal subjects. We think that the discussion on the possible physiopathologic mechanisms could be deepened. Although an influence of advancing age on lung cellularity in healthy subjects has been already described,2 reference values for cell counts in induced sputum in healthy adults >50 years old are not available. The possible explanations of the results found by Thomas et al1 could be an impairment in humoral lung immunity in older healthy subjects compared with younger healthy subjects,3 and the presence of a low-grade inflammation in the lower respiratory tracts of many asymptomatic, older subjects.4 In particular, a previous study5 has reported in BAL fluid of the older healthy individuals an increase in CD4+/CD8+ lymphocytes ratio probably due to a repeated antigenic stimulation or irritation by environmental substances of the immune cells in the lower respiratory tract during the years. The recurrent antigen stimulation on the immune cells in the lung could be demonstrated by the decreasing with age of CD19+ B lymphocytes that represent the B cells not yet differentiated into antibody-secreting cells, suggesting that B cells on mucosal surface of airways in older subjects has been driven to differentiate by previous repeated antigen stimulations. The low-grade inflammation in the airways observed in older subjects might be related to the decline in the lung function that starts in the fourth to fifth decade of life in normal never-smoker humans. The mechanism by which neutrophils are recruited to within the airways in older healthy subjects is still unclear. A number of neutrophil chemoattractants can be secreted by inflammatory cells that reside in the airways, and epithelial cells can release cytokines, such as IL-8, which have potent chemoattractant activity for neutrophils.6 Low-grade persistent inflammation may occur because of the loss of factors that normally down-regulate the inflammatory response to pollutants.

Douglas C. Johnson, MD
Spaulding Rehabilitation Hospital, 125 Nashua St, Boston, MA 02114; e-mail: djohnson5@partners.org

References

Correspondence to: Douglas C. Johnson, MD, Spaulding Rehabilitation Hospital, 125 Nashua St, Boston, MA 02114; e-mail: djohnson5@partners.org

www.chestjournal.org
or repetitive antigenic stimulations, combined with advancing age. Epithelial cells could be a significant source of neutrophil chemoattractants, which contributes to a low-grade inflammation in older subjects. Persistent, low-grade inflammation could damage elastin and perhaps lead to the age-associated loss of elastin fibers. Therefore, considering that many patients affected by asthma or COPD who increasingly perform induced sputum are often > 50 years old, these findings deserve further investigations.

Mario Malerba, MD
University of Brescia
Bruno Balbi, MD
Istituto di Gussago Brescia
Brescia, Italy
Antonio Spancelli, MD
Istituto di Cassano Murge
Bari, Italy

Ribavirin Should Be Tested in Clinical Trials in Combination With Other Antiviral Agents for Severe Acute Respiratory Syndrome

To the Editor:

We read with interest the article in CHEST by Chion et al (July 2005) and offer the following comments. The ribavirin-treated patients had higher lactate dehydrogenase levels, a well-known adverse prognostic factor in severe acute respiratory syndrome (SARS). The nonsignificantly higher mortality could be due to the more severe disease in this group. Viral load, another adverse prognostic factor in severe acute respiratory syndrome patients had higher lactate dehydrogenase levels, a well-known ad

References


REFERENCES


Chung-Ming Chu, MD, FCCP
Kin-Song Chan, MBBS, FCCP
United Christian Hospital
Hong Kong

A Modified Percutaneous Tracheostomy Technique Without Bronchoscopic Guidance

A Note of Concern

To the Editor:

We read with interest the article in CHEST by Paran and colleagues (September 2004) on a modified percutaneous tra-