the number of good sputum specimens collected before and after rinsing the mouth with tap water three times (p = 0.16; χ² 0.05 level of significance). We surmise that rinsing the mouth with tap water prior to sputum collection does not improve specimen quality. It is possible that brushing the teeth and/or removing dentures might yield more favorable results. However, it may be virtually impossible to prevent external "contamination" of the sputum bolus during expectoration.

D. J. Flournoy, PhD
Louis A. Galarza, BS
University of Oklahoma Health Sciences Center
Oklahoma City, OK

CORRESPONDENCE TO: D. J. Flournoy, PhD, Microbiology Section, Pathology and Laboratory Medicine Service, 921 N.E. 13th St, Veterans Affairs Medical Center, Oklahoma City, OK 73104

REFERENCES

Exercise Testing in the Consulting Room

To the Editor:

We read with interest the article by Hadeli et al (July 2001) concerning oxygen desaturation during submaximal exercise testing in a pulmonary function laboratory. We used a slightly different exercise protocol during medical consultations with patients who attend our chest clinic because of breathlessness. Patients climb on and off a 18-cm high exercise step in the consulting room while being monitored by pulse oximetry. Patients are instructed to climb the steps as quickly as they find comfortable and to stop if they are breathless, fatigued, or distressed in any other way. We recommend the use of exercise oximetry in the consulting room as a routine component of consultations for breathless patients.

Emma Flynn, MB
Ronan O’Driscoll, MD
Hope Hospital
Salford, UK

CORRESPONDENCE TO: Ronan O’Driscoll, MD, Consultant Chest Physician, Department of Cardio-Respiratory Medicine, H3 Teaching Block, Hope Hospital, Stott Lane, Salford, M6 8HD United Kingdom; e-mail: Ronan.O'Driscoll@SRHT.NHS.UK

REFERENCE

Immersion Pulmonary Edema in Special Forces Combat Swimmers

To the Editor:

We thoroughly enjoyed the review of pulmonary edema associated with scuba diving by Slade et al, in the November issue of

Table 1—Changes in Oxygen Saturation During Exercise in 119 Patients Grouped According to KCO*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>Group 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCO, % predicted</td>
<td>< 40%</td>
<td>40–60%</td>
<td>60–80%</td>
<td>80–100%</td>
<td>> 100%</td>
</tr>
<tr>
<td>Subjects, No.</td>
<td>10</td>
<td>29</td>
<td>32</td>
<td>30</td>
<td>18</td>
</tr>
<tr>
<td>Any fall in SpO₂, %</td>
<td>100</td>
<td>100</td>
<td>87</td>
<td>40</td>
<td>33</td>
</tr>
<tr>
<td>SpO₂ fall > 3%, %</td>
<td>100</td>
<td>97</td>
<td>97</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Mean fall in SpO₂, % (95% CI)</td>
<td>11.3 (9.2–13.4)</td>
<td>6.9 (6.0–7.8)</td>
<td>3.6 (2.7–4.5)</td>
<td>1.1 (0.5–1.8)</td>
<td>0.9 (0.1–1.9)</td>
</tr>
</tbody>
</table>

*SpO₂ = pulse oximetric saturation; CI = confidence interval.

www.chestjournal.org

CHEST / 122 / 1 / JULY, 2002 383