the status of hypohaptoglobinemia, lactate dehydrogenase may be an easy and sensitive marker for the severity and recovery of intravascular hemolysis.

Ping-Hung Kuo, MD
Kwen-Tay Luh, MD, FCCP
National Taiwan University Hospital
Taipei, Taiwan

Correspondence to: Kwen-Tay Luh, MD, FCCP, Department of Laboratory Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Rd, Taipei, Taiwan; e-mail: luhkt@ha.mc.ntu.edu.tw

REFERENCE

CT Screening for Early Stage Lung Cancer

To the Editor:

CT screening for “early” lung cancer is a topic under current investigation in an increasing number of centers worldwide. However, a number of centers have already reported the results of chest CT scanning in the assessment of candidates for surgical management of pulmonary emphysema. To our knowledge, six series have reported rates of discovery of stage I lung carcinoma at CT evaluation of these subjects (Table 1). Combining the data of these studies, CT-detected stage I and stages II through IV carcinoma of the lung showed overall prevalences of 3.0% and 0.7%, respectively. These prevalences differ significantly ($\chi^2 = 16.0$, $p < 0.01$); the proportions of stage I vs stages II-IV cancers in the six series are homogeneous ($\chi^2 = 4.67$, $p = 0.46$, not significant [NS], and $\chi^2 = 4.45$, $p = 0.49$, NS, respectively), i.e., the differences among the series can be regarded as chance fluctuations.

These results, obtained from populations who were fit to undergo thoracic surgery and in the age range for which lung

Table 1—Prevalence of Lung Cancer at CT Scanning in Patients With Pulmonary Emphysema Undergoing Evaluation for Either Lung Transplantation or Lung Volume Reduction Surgery

<table>
<thead>
<tr>
<th>Source Author</th>
<th>Subjects, No.</th>
<th>Subjects With Stage I Lung Cancer at CT</th>
<th>Subjects With Stage II–IV Lung Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kazerooni et al1</td>
<td>96</td>
<td>3 (3.1)</td>
<td>2 (2.1)</td>
</tr>
<tr>
<td>McKenna et al2</td>
<td>325</td>
<td>9 (2.8)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>Pigula et al3</td>
<td>210</td>
<td>4 (1.9)</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td>Hazelrigg et al4</td>
<td>281</td>
<td>7 (2.5)</td>
<td>3 (1.1)</td>
</tr>
<tr>
<td>Duarte et al5</td>
<td>65</td>
<td>3 (4.6)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Rozenshtein et al6</td>
<td>148</td>
<td>8 (5.4)</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>Total</td>
<td>1,125</td>
<td>34 (3.0)†</td>
<td>8 (0.7)†</td>
</tr>
</tbody>
</table>

*Data are presented as No. (%) unless otherwise indicated.

1 $\chi^2 = 16.0$, $p < 0.01$.

www.chestjournal.org

Figure 1. Zymogram of methemalbumin and haptoglobin on 5% polyacrylamide gel. Black arrows indicate ahaptoglobinemia electrophoretic patterns (1 and 2, methemalbumin-positive cases; 3, a methemalbumin-negative case). MHA = methemalbumin; Hp = haptoglobin; Hb = hemoglobin.
cancer is common, support the concept that CT screening for early stages of lung cancer may prove efficacious.

John H. M. Austin, MD, FCCP
Gregory D. N. Pearson, MD, PhD
Byron Thomashow, MD, FCCP
Columbia Presbyterian Medical Center
New York, NY

Correspondence to: John H. M. Austin, MD, FCCP, Division of Thoracic Imaging, Columbia Presbyterian Medical Center, 622 West 168th St, New York, NY 10032; e-mail: jha3@columbia.edu

REFERENCES

Adequate Tidal Volume With Row-a-Boat Phenomenon in Advanced Duchenne Muscular Dystrophy

To the Editor:

We demonstrated, in our previous report, that the row-a-boat phenomenon (RBP) of spontaneous upper-body movement in patients with advanced Duchenne muscular dystrophy (DMD), which occurs when these patients are sitting upright supported by a belt around the body, is a respiratory movement to compensate for the atrophied respiratory muscles in advanced DMD. The major mechanism to generate tidal volume in RBP is an active compression of the thorax and abdomen during expiration, which is done by making use of the belt. Despite the lack of arm movement, the motion looks as if the belt were rowing a boat. Here, we show a practical method to obtain an adequate tidal volume with RBP.

We used a tightly woven cotton belt 13.5 cm (5.3 inches) in width, which was tied around a patient in an electrical wheelchair to help maintain him in the upright position. The belt was positioned between the fourth/fifth and eighth/ninth ribs anterior to the axillary line of the patients. With the aim of assessing the effects of belt position on the efficacy of RBP, we compared respiration with the belt in its usual position and positioned 10 cm (3.9 inches) cephalad. Breath-to-breath ventilation and expiratory gases were measured with a respirimetabolic monitoring system (MG-360, RM-300; Minato: Osaka, Japan) through a full face-mask. The subjects were six patients with DMD, 22 to 35 years of age, who were unable to ambulate and were dependent on mechanical ventilation 50 to 100% of the time. They started spontaneous RBP as soon as they were transferred from the bed to an upright position in a wheelchair with the ventilator temporarily stopped. During RBP with the belt in its usual position, tidal volume was 276 ± 69 mL per breath (mean ± SD) and respiratory rate was 30.3 ± 7.0 breaths/min. However, with the belt in the more cephalad position, tidal volume was significantly decreased, to 232 ± 71 mL per breath (p < 0.05), without any change in respiratory rate of 31.0 ± 7.8 breaths/min. The supplemental tidal volume exerted by an efficient RBP in these patients was approximately 20%. With the unusual belt position, all the patients felt uneasy on breathing due to a lack of freedom to utilize their upper body for RBP.

Breathing is controlled separately by the autonomic and voluntary pathways, which are, at least partially, anatomically different. Discrete syndromes of selective paralysis of autonomic or voluntary respiration, with the function of one pathway being paralyzed and the other being spared, were previously described by one of the authors.2 The RBP is a backup mechanism exerted by the voluntary pathway to compensate for the paralyzed autonomic pathway, primarily the weakened diaphragm, in advanced DMD. Interestingly, we observed that RBP mostly occurred spontaneously in patients sitting in a wheelchair; the patients themselves did not notice the occurrence of RBP. This seems a wonderful example of the cleverness of the nervous system to be able to develop such crucial compensatory responses in the face of lost function of autonomic respiration.

Byron Thomashow, MD, FCCP
7.0 breaths/min. During RBP with the belt in its usual position, tidal volume was 276 ± 69 mL per breath (mean ± SD) and respiratory rate was 30.3 ± 7.0 breaths/min. However, with the belt in the more cephalad position, tidal volume was significantly decreased, to 232 ± 71 mL per breath (p < 0.05), without any change in respiratory rate of 31.0 ± 7.8 breaths/min. The supplemental tidal volume exerted by an efficient RBP in these patients was approximately 20%. With the unusual belt position, all the patients felt uneasy on breathing due to a lack of freedom to utilize their upper body for RBP.

Breathing is controlled separately by the autonomic and voluntary pathways, which are, at least partially, anatomically different. Discrete syndromes of selective paralysis of autonomic or voluntary respiration, with the function of one pathway being paralyzed and the other being spared, were previously described by one of the authors.2 The RBP is a backup mechanism exerted by the voluntary pathway to compensate for the paralyzed autonomic pathway, primarily the weakened diaphragm, in advanced DMD. Interestingly, we observed that RBP mostly occurred spontaneously in patients sitting in a wheelchair; the patients themselves did not notice the occurrence of RBP. This seems a wonderful example of the cleverness of the nervous system to be able to develop such crucial compensatory responses in the face of lost function of autonomic respiration.

Fumihiko Yasuma, MD, FCCP
Masahiro Naga, RT
Suzuka National Hospital
Suzuka, Japan

Correspondence to: Fumihiko Yasuma, MD, FCCP, Physician-in-Chief, Department of Internal Medicine, Suzuka National Hospital, 3–2–1 Kosado, Suzuka, 513-8501 Japan; e-mail: f-yasuma@nath.biglobe.ne.jp

REFERENCES

Predictive Parameters of Dropout During Inhaled Corticosteroid Tapering

To the Editor:

We have retrospectively analyzed data from four clinical trials whereby treatment with inhaled corticosteroids (ICS) was either tapered down or stopped during a preliminary run-in period. The purpose of the analysis was to evaluate whether parameters at initial screening might be predictive of subsequent patient dropout due to asthma exacerbation.

The doses of ICS were reduced by 50% until the beclomethasone dipropionate (BDP) equivalent dose was ≤ 400 μg/d. BDP equivalent dose of ICS was calculated on the basis of fluticasone propionate (FP) being twice as potent as budesonide or BDP, so that the equivalent FP dose was multiplied twofold. We analyzed data on FEV1, forced expired flow, midexpiratory phase (FEF25–75), and ICS (BDP equivalent dose).