hemoglobin values alone are not often indications to accept the hazards of blood transfusion. Physiologic impairment related to inadequate oxygen transport, secondary to decreased circulating red blood cells, seems to be the current major indicator for transfusion. Unfortunately, there is still a philosophy that, when transfusion is indicated, a minimum of two units of packed red cells should be given to an average size adult. If we really believe that the hazards and risks of transfusion are directly related to the number of units administered, it would seem reasonable to discard the two-unit minimum. When a patient reaches a point where augmentation of the red cell mass is indicated and active bleeding is not present, a single unit will often turn the tide. If the observed improvement is inadequate, a second or third unit can be given. The point is, however, if we are to “do no harm,” we should administer only the amount of blood actually needed by the patient. Giving two units of red cells automatically, in every case of adult transfusion, as was the teaching when transfusion indications were less stringent and we knew less about associated hazards, is no longer reasonable and should be avoided.

John P. Judson, MD, FCCP
Lemoyne, PA

Correspondence to: John P. Judson, MD, FCCP, 512 Bridgeview Drive, Lemoyne, PA 17043; e-mail: drjudson@aol.com

REFERENCES

High-Dose Dexfenfluramine May Cause Alveolitis and Pulmonary Fibrosis in Rats

To the Editor:

The use of fenfluramine derivatives is a well-established risk factor for primary pulmonary hypertension. previously, we used dexfenfluramine (DF) to test its effects on glucose intake in rats. Although, at the beginning, we did not plan to test its side-effects, by the end of the study period we did observe some histopathologic tissue changes (unpublished observation). We read, with great interest, the fine article by Higenbottam et al. on the acute effects of DF on human and porcine pulmonary vascular tone and resistance. Although we used high-dose and long-term DF treatment in rats, we now want to mention about our observations, as the histopathologic changes may be related to pulmonary hypertension. In our study, we used 10 adult male Wistar albino rats (100 to 150 g), divided into two groups. DF (10 mg/kg/d) was given orally by gavage to the first group (n = 5) for 30 days. During this period, the second (control) group (n = 5) received equivalent volumes of saline orally. The weight gain was recorded weekly. DF prevented weight gain throughout the study (p < 0.05 vs control group). On the 31st day, the rats were killed by cervical dislocation. Lungs, testicles, kidneys, and retroperitoneal tissues (iliopectineal muscle and abdominal aorta) were examined macroscopically and histologically. No particular changes in testicular, renal, or retroperitoneal tissue morphology were seen in all alveolar regions of the lungs in the animals treated with DF. Interstitial lung disease and pleural and retroperitoneal fibrosis through serotonergic drugs had been previously reported. However, there is no report as to whether DF causes tissue fibrosis. In conclusion, high-dose and long-term use of DF may cause alveolitis, which may further lead to pulmonary fibrosis in rats.

Oguzhan Yildiz, MD, PhD
Semih Seno ¨z, MD
Cagatay Oktenli, MD
Gülhane School of Medicine
Ankara, Turkey

Correspondence to: Oguzhan Yildiz, MD, PhD, Department of Pharmacology, Gülhane School of Medicine, 06018-Etilk, Ankara, Turkey; e-mail: oyildiz@gata.edu.tr

REFERENCES

Communications to the Editor