6'WT would have improved the correlation with \(V_{O2} \) max is not necessarily true. If all patients increased the distance they walked because of encouragement, then a different prediction equation would have resulted but the end-result could be the same: that is, the 6'WT prediction of \(V_{O2} \) max underestimates the measured \(V_{O2} \) max. In addition, if an increased \(F_{I02} \) was supplied during the \(V_{O2} \) max test (should increase \(V_{O2} \) max) or if supplemental \(O_2 \) was not provided during the 6'WT (should decrease walking distance) then a larger than reported discrepancy between predicted and measured \(V_{O2} \) max could result.

Finally, the “line of identity” in Figure 3 is incorrectly drawn. It should have a considerably steeper slope which would more correctly illustrate the differences between estimated and measured \(V_{O2} \) max.

I hope the authors address these issues since simple, cost-effective measurement tools are indeed required. The efforts of the authors in this regard are appreciated.

Richard L. Jones, PhD, FCCP, Pulmonary Division, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada

Hepatocyte Growth Factor and Idiopathic Pulmonary Fibrosis

To the Editor:

It has been reported that hepatocyte growth factor (HGF) is a growth factor that may mediate human renal cyst formation. In idiopathic pulmonary fibrosis (IPF), the formation of a honey-comb lung is an important pathologic feature. As in renal cyst formation, the process of honey-comb lung formation also includes epithelial cell proliferation and a remodeling of the extracellular matrix. In the lung, HGF is synthesized and secreted by mesenchymal cells, such as macrophages, endothelial cells, and fibroblasts, and controls proliferation and morphogenesis of epithelial cells. It has recently been revealed that the lung has an endocrine function thus producing HGF for the regeneration of injured tissues or organs. HGF also acts as a pulmotrophic factor on lung regeneration after acute lung injury and is a potential paracrine growth factor for rat alveolar type II cells in primary culture. Therefore, we hypothesized that HGF may play important roles in regulating the growth of lung epithelium and in the regeneration of the lung as a paracrine or endocrine factor in IPF. Based on this background, we measured plasma HGF in 15 IPF patients (10 male/5 female, median age 56). The diagnosis of IPF was based on accepted criteria, which included either evidence of diffuse parenchymal infiltrates (peripheral and reticular nodular with a lower lobe predominance) on chest radiograph or restrictive lung function with an open lung biopsy demonstrating varying degrees of interstitial fibrosis and intra-alveolar inflammatory cells. HGF was measured by enzyme-linked immunosorbent assay with monoclonal and polyclonal antibodies against human HGF (Otsuka Assay Laboratories; Tokushima, Japan). Thirty age-matched normal smokers, and 30 age-matched lung cancer patients served as the control group. As a result, mean (SD) serum HGF concentration of the patients with IPF was 0.40 (0.12) ng/mL, which was significantly higher compared with normal smokers (0.16 [0.05], \(p<0.001 \)), as well as patients with lung cancer (0.17 [0.05], \(p<0.001 \)). Serum HGF in patients with IPF appeared to be higher compared with the patients with cystic renal disease (0.24 [0.08], data in Lancet). Immunohistochemical staining with rabbit polyclonal antihuman HGF antibody (gift from Dr. T. Nakamura; Osaka, Japan) showed that HGF was distributed to the lung epithelial cells in IPF lung specimens obtained by open lung biopsy (Fig 1). These results suggest that HGF may play an important role in the pathogenesis of IPF.

Jiro Fujita, MD, FCCP, Satoko Hojo, MD, Yasufumi Yamaji, MD, and Jiro Takahara, MD, First Department of Internal Medicine, Kagawa Medical School, Kagawa, Japan; and Ichiro Yamadori, MD, Second Department of Pathology, Okayama University, Kagawa Central Prefectural Hospital, Japan

Reprint requests: Dr. Fujita, Kagawa Medical School, 1750-I, Miki-cho, Kita-gun, Kagawa 761-07 Japan

REFERENCES

Cardiac Troponins in the Diagnosis of Myocardial Contusion

To the Editor:

The excellent review article “Blunt Myocardial Injury” (CHEST 1995; 105:1673-77) by Drs. Feghali and Frisant merits additional...