lular lactoferrin, and accounts for the radioactivity detected by scintillation scanning of the lungs.

We investigated the pulmonary disposition of 67Ga in patients with pneumocystis pneumonia, which is also associated with increased pulmonary vascular permeability and 67Ga uptake. We found no significant difference between mean bronchoalveolar lavage transferrin concentrations in patients with pneumocystis pneumonia, associated with pulmonary uptake of 67Ga, and patients without infection and negative gallium scanning. Furthermore, radioactivity in the bronchoalveolar lavage supernatant was correlated with the presence of neutrophil alveolitis, but not with transferrin concentrations. The extracellular release of lactoferrin, which binds gallium with greater affinity than transferrin, may have accounted for the 67Ga radioactivity in the lavage supernatant from patients with pneumocystis pneumonia and neutrophil alveolitis.

Thus, determination of pulmonary 67Ga uptake may not provide an accurate assessment of the permeability of the microvasculature to transferrin, but rather, it may reflect the instability of the 67Ga-transferrin complex in the presence of neutrophil activation and inflammation.

Robert L. Smith, MD, FCCP, and Kenneth A. Berkowitz, MD, FCCP,
Department of Medicine,
Department of Veterans Affairs Medical Center,
New York

REFERENCES

To the Editor:

We thank Drs. Smith and Berkowitz for their valuable comments on our paper (Chest 1993; 104:1825-32) describing an increased 1-h pulmonary uptake of IV injected 67Ga, corrected for blood content in patients after prolonged cardiac surgery with cardiopulmonary bypass (CPB). They question our interpretation that the pulmonary 67Ga uptake, i.e., the pulmonary leak index (PLI), is a measure of microvascular permeability in the lungs. They suggest that the increased 67Ga-PLI is not caused by increased microvascular transferrin transport but by increased binding to neutrophils, lactoferrin, or both within the pulmonary microvasculature. This would only be possible if the pulmonary microvascular concentrations would greatly exceed those in systemic blood, which is unlikely for lactoferrin if secreted by activated neutrophils in the pulmonary microvasculature and diluted by the blood stream. Nevertheless, we cannot exclude that activated neutrophils in the pulmonary microvasculature could be responsible in part for the increased 67Ga-PLI in some of our patients, although viable neutrophils may bind less than 1% of the 67Ga presented to them in vitro. Indeed, the mechanism of 67Ga uptake in inflammatory lesions is controversial, although increased microvascular permeability may be the main factor involved, because the accumulation of the radionuclide in these lesions is predominantly extravascular and extracellular. The data by Smith et al. (J Nucl Med 1992; 33:512-15) in Pneumocystis carinii pneumonia with increased 67Ga uptake in the lungs 24 h after IV injection could indicate increased 67Ga extravasation in the lungs, since the levels of the radionuclide were elevated in the (acellar fraction of) bronchoalveolar lavage (BAL) fluid. The question remains whether proteins or cells would have been responsible for this increased 67Ga transport. In BAL fluid, the transferrin concentration was normal and the elevated 67Ga concentration directly correlated with the neutrophil fraction of cells in the fluid. The normal levels of transferrin in BAL fluid could argue against 67Ga transport by transferrin, although the transferrin levels may not have reflected transferrin extravasation at the time of 67Ga injection, as acknowledged by the authors. The transport of 67Ga could have been caused by increased transport through lactoferrin, which was not measured, or neutrophils, which were elevated in the BAL fluid. Increased transport of 67Ga through lactoferrin would denote increased protein permeability; increased transport through leukocytes would indicate increased cellular permeability. In either case, 67Ga accumulation in the alveolar space could have been caused only by a change in the pulmonary microvasculature. Hence, the findings by the authors would not argue against the 1-h 67Ga-PLI as an index of microvascular changes and increased permeability in the lungs. This idea is reinforced by the recent study of Dauber et al., showing a threefold increase in the PLI, using 111In-lactoferrin, which more firmly binds to circulating transferrin than 67Ga after bypass in dogs. Hence, these experimental data agree with our data in man (Chest 1993; 104:1825-32). We recently described a patient with pulmonary edema after cocaine/heroin abuse with a 75% neutrophil count in BAL fluid and a normal 67Ga-PLI of $\sim 8.5 \times 10^{-5} \cdot \text{min}^{-1}$. Moreover, we found an increased 67Ga-PLI of 52.4 $\times 10^{-3} \cdot \text{min}^{-1}$ in a leukemic patient who developed ARDS after streptococcal sepsis, 3 days after induction of pancytopenia by chemotherapy, virtually eliminating circulating neutrophils. During recovery of neutrophil numbers in blood to $5.2 \times 10^{9} \cdot \text{L}^{-1}$ and resolution of adult respiratory distress syndrome, the 67Ga-PLI decreased to $6.6 \times 10^{-3} \cdot \text{min}^{-1}$. These data agree with the observation that 67Ga accumulates in inflammatory lesions, even in case of prior severe neutropenia. Taken together, these data argue against the idea that neutrophil trapping of 67Ga caused the elevated 67Ga-PLI in the lungs of our patients with prolonged CPB-surgery. Nevertheless, the mechanisms underlying the 67Ga-PLI deserve further study.

Pieter G.H.M. Rajmakers MD, and A.B. Johan Groeneveld MD, PhD,
Department of Internal Medicine,
Free University Hospital, the Netherlands

REFERENCES