percent, much closer to the APACHE III rate of 88.1 percent than the value presented. This error in research was probably inadvertent, but is nevertheless misleading.

Daniel Teres, M.D.,
Critical Care Division,
Baystate Medical Center,
Springfield, Massachusetts,
Stanley Lemeshow, Ph. D.,
Department of Biostatistics and Epidemiology,
University of Massachusetts,
Amherst

REFERENCES

To the Editor:

We agree. We used a figure from Table 6 of the article by Lemeshow et al., which was for a restricted set of patients. The correct overall classification from the study was 84.9 percent, achieved with the patients from a single hospital as compared with a correct classification of 88.1 percent with APACHE III on a 40-hospital data base. We emphasize, however, that because of the bias inherent in trying to compare correct classification rates across data files that have varying baseline outcome rates, we prefer receiver operating characteristic (ROC) areas. For the specific issue of predicting hospital death rates, ROC areas are even more useful, since the conventional threshold of a 0.50 risk of death used in the above correct classification calculations is arbitrary. The APACHE III system achieved a 0.90 ROC area.

We also would like to take this opportunity to correct one error in our APACHE III article. The sex ratio was reversed. The correct distribution of sex across ICU admissions is 55.2 percent male and 44.8 percent female. Sex has no relationship with outcome and is not used in any APACHE outcome predictions.

William A. Knaus, M.D.,
ICU Research,
George Washington University Medical Center,
Washington, DC

Magnetic Resonance Imaging of Thymic Squamous Cell Carcinoma

To the Editor:

Recently, magnetic resonance (MR) technology has provided specific signal intensities for thymic squamous masses. Typical thymoma has been reported to show a signal intensity intermediate between the intensities of muscle and fat on T1-weighted images and an intensity almost equal to that of fat on T2-weighted images.1,2

We encountered a 65-year-old man presenting with typical symptoms of myasthenia and the rare complication of thymic squamous cell carcinoma.3 Histologically, the tumor contained many nests, calcified in part and surrounded by thick fibrous bands. Hassall's corpuscle-like figures, mononuclear keratinization, and intercellular bridges were also noted.

An MR imaging study of the chest (Fig 1) was obtained with a 0.5-T superconducting system (SMT 50, Simazu, Kyoto, Japan).

To the Editor:

The intermediate signal intensity of the mass on the T1-weighted images was compatible with that of thymoma. On T2-weighted images, the intensity of the tumor was lower than that of fat, and the tumor contained some areas of much lower intensity. According to Molina et al.,2 these findings probably correspond pathologically to septa and calcification. This is, to the best of our knowledge, the first report on the MR appearance of thymic squamous cell carcinoma in a case in which myasthenic symptoms led to detection of the tumor.

Yoshiaki Honda, M.D.,
Ichiro Murai, M.D.,
Miyoshi Ayabe, M.D.,
Hiroshi Shoji, M.D., and
Kotaro Otsumi, M.D.,
Karume University School of Medicine,
Karume, Japan

Reprint requests: Dr. Honda, Karume University School of Medicine, 67 Asahi-machi, Karume-shi, Fukuoka 830, Japan

REFERENCES

Reexpansion Pulmonary Edema

To the Editor:

We read with great interest the article by Matsuura and colleagues,1 which appeared in the December 1991 issue of Chest. In reporting their experience with reexpansion pulmonary edema in a