In patients with asthma, the respiratory muscles have to overcome the increased resistance while they become progressively disadvantaged by hyperinflation. We hypothesized that increasing respiratory muscle strength and endurance with specific inspiratory muscle training (SIMT) would result in improvement in asthma symptoms in patients with asthma. Thirty patients with moderate to severe asthma were recruited into 2 groups; 15 patients received SIMT (group A) and 15 patients were assigned to the control group (group B) and got sham training in a double-blind group-comparative trial. The training was performed using a threshold inspiratory muscle trainer. Subjects of both groups trained five times a week, each session consisted of 1/4-h training, for six months. Inspiratory muscle strength, as expressed by the Plmax at RV, increased significantly, from 84.0 ± 4.3 to 107.0 ± 4.8 cm H2O (p < 0.0001) and the respiratory muscle endurance, as expressed by the relationship between Ppeak and Plmax from 67.5 ± 3.1 percent to 93.1 ± 1.2 percent (p < 0.0001), in patients of group A, but not in patients of group B. This improvement was associated with significant improvements compared with baseline for asthma symptoms (nighttime asthma, p < 0.05; morning tightness, p < 0.05; daytime asthma, p < 0.01; cough, p < 0.005), inhaled B2 usage (p < 0.05), and the number of hospital (p < 0.05) and sickleave (p < 0.05) days due to asthma. Five patients were able to stop taking oral/IM corticosteroids while on training and one in the placebo group. We conclude that SIMT, for six months, improves the inspiratory muscle strength and endurance, and results in improvement in asthma symptoms, hospitalizations for asthma, emergency department contact, absence from school or work, and medication consumption in patients with asthma.

\[(P_{peak} = \text{peak pressure; SIMT} = \text{specific inspiratory muscle training; TMIT} = \text{threshold inspiratory muscle trainer})\]

Methods

Thirty patients, 12 men and 18 women, with moderate to severe asthma, who satisfied the criteria of the American Thoracic Society for asthma,* were recruited into 2 groups; 15 patients received SIMT (group A) and 15 patients were assigned to the control group (group B) and got sham training in a double-blind group-comparative trial (Table 1).

Patients used daily diary cards during the three months before entering the training program and throughout the last three months of the training to record hospitalizations for asthma, emergency department contact, absence from school or work, and inhaled β2-agonist consumption, and during the last two weeks of each time period to record the severity of asthma symptoms, as follows: (a) nighttime asthma, recorded each morning, on a scale of 0, no asthma; 1, slightly wheezy; 2, awoke once because of asthma; 3, awoke several times because of asthma; 4, awake most of night because of asthma; (b) daytime asthma, recorded each evening on a scale of 0, no asthma; 1, occasional wheezing or breathlessness; 2, frequent wheezing or breathlessness; 3, wheezing or breathlessness for most of the day that interfered with normal activities; 4, breathlessness so bad that it prevented the patient attending work or school; and (3) cough recorded each evening on a scale of 0, no cough; 1, occasional cough; 2, frequent coughing but with no interference with normal activities; 3, frequent coughing that interfered with normal activities; 4, cough so bad preventing normal activities.

Tests

All tests were performed before, every two months during the training period, and after six months of training.

Spirometry: The forced vital capacity (FVC) and the forced
expiratory volume in 1 s (FEV.) were measured three times on a computerized spirometer (Compact, Vitarlograph, Buckingham, England) and the best trial is reported. Lung functions were measured before and following the training period.

Respiratory Muscle Strength: Respiratory muscle strength was assessed by measuring the maximal inspiratory mouth pressure (PImax) and expiratory pressure (PEmax), at residual volume (RV) and total lung capacity (TLC), respectively, as previously described by Black and Hyatt. The value obtained from the best of at least three efforts was used.

Respiratory Muscle Endurance: To determine inspiratory muscle endurance, a device similar to that proposed by Nickerson and Kees was used. Subjects inspired through a two-way valve (Hans Rudolph) whose inspiratory port was connected to a chamber and plunger to which weights could be added externally. Inspiratory work was then increased by the progressive addition of 25- to 100-g weights at 2-min intervals, as was previously described by Martyn and coworkers, until the subjects were exhausted and could no longer inspire. The pressure achieved with the heaviest load (tolerated for at least 60 s) was defined as the peak pressure (Pp peak).

The technicians who performed the tests were totally blinded to the mode of training the patients received.

Training Protocol: Subjects of both groups trained five times a week; each session consisted of 1-h training for six months. The training was performed under the supervision of a physiotherapist, and once a week had an interview with the physician. Both groups received the same attention and adjustment in medications and were treated equally during the training period.

In the SIMT group, subjects started to train with a resistance equal to 15 percent of their PImax and the resistance was then increased incrementally to 60 percent of their PImax, through the first month. SIMT was then continued at 60 percent of the PImax. The level of load has been adjusted every two months according to the new measurements of the PImax achieved by the patients. For the last two months of the study, the patients trained in a level of resistance equal to 80 percent of their PImax. Patients in group B breathed through the same trainer with no resistance. The subjects received either SIMT or a sham training with a threshold inspiratory muscle trainer (TIMT) (Threshold Inspiratory Muscle Trainer, Healthscan, New Jersey).

Patients in both groups were highly motivated and highly compliant with the training. Even the control patients continued using the sham training to the end of the study. However, most of the patients in the control group became gradually aware of the fact that they were using a sham device, but there was no interaction among the subjects in each group.

Statistical Analysis

Comparisons of lung function and respiratory muscle performance values between the training group and the control group and the effect of training on these parameters were carried out using the two-way repeated measures analysis of variance (ANOVA). When the overall ANOVA was significant, post hoc comparisons have been made. The χ² (degree of freedom, 1) statistics were used to compare changes in asthma symptoms, emergency department contact, absence from school or work, and inhaled β₂-agonist consumption.

Results

There were no differences between the two groups in age, duration of asthma, lung functions, or medication, before training (Table 1). However, there was a small but significant increase, from 57.3 ± 3.2 to 65.2 ± 3.2 (mean ± SEM, p < 0.005) in FEV₁, and from 76.8 ± 3.1 to 86.6 ± 2.5 (p < 0.005) in FVC (percentage of predicted normal values) after six months in the training group but not in the control group (Table 2).

Respiratory muscle strength and endurance were unchanged in the control group after the six months of training (Table 2). In contrast, there was a significant increase in respiratory muscle strength as expressed by the PImax at RV (from 84.0 ± 4.3 cm H₂O to 107.0 ± 4.8 cm H₂O; p < 0.0001), and in respiratory muscle endurance, as expressed by the relationship between Pp peak and PImax (from 67.5 ± 3.1 percent to 93.1 ± 1.2 percent, p < 0.0001), in patients of group A.

There was also significant improvement as compared with baseline for asthma symptoms (nighttime asthma, p < 0.05; morning tightness, p < 0.05; daytime asthma, p < 0.01; cough, p < 0.005) in patients of group A but not in group B (Fig 1), following the training period.

Similar results were evident in the diary cards scores for inhaled β₂ usage (p < 0.05) and the number of hospital (p < 0.05) and sick-leave (p < 0.05) days due to asthma (Fig 2).

Five patients were able to stop oral/IM corticosteroid therapy while on training and one in the placebo group was able to stop.

Discussion

In our study, we found that specific inspiratory threshold loading training, five times a week, for ½ h each session, for six months, markedly improved inspiratory muscle strength and endurance, as well as reduced asthma symptoms, hospitalizations for asthma, emergency department contact, absence from school or work, and medication consumption in patients with asthma.

Asthmatic patients are exposed to airway obstruction and hyperinflation. Airway resistance is increased up to 15 times normal but it is probably the concomitant hyperinflation that impairs the capacity of the respiratory muscles to handle this load.

The main mechanism whereby hyperinflation adversely affects the inspiratory muscle is by forcing them to operate in an inefficient part of their force-length relationship. Hyperinflation shortens the inspiratory muscles and diminishes their ability to

Table 1—Characteristics of Patients

<table>
<thead>
<tr>
<th></th>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients, M/F</td>
<td>15 (9/6)</td>
<td>15 (9/6)</td>
</tr>
<tr>
<td>Mean age, yr</td>
<td>42.3 ± 7.6</td>
<td>38.7 ± 6.2</td>
</tr>
<tr>
<td>Mean duration of asthma, yr</td>
<td>14.7 ± 4.3</td>
<td>15.4 ± 4.8</td>
</tr>
<tr>
<td>FEV₁, % of predicted</td>
<td>57.3 ± 6.2</td>
<td>60.6 ± 5.8</td>
</tr>
<tr>
<td>FVC, % of predicted</td>
<td>76.8 ± 7.1</td>
<td>73.6 ± 6.6</td>
</tr>
<tr>
<td>Current medication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral steroids</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Inhaled steroids</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Sodium cromoglicate</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Inhaled β₂-agonist</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>
generate negative pressure while inspirin...14 It causes the flattening of the diaphragm, which in turn places it in a serious mechanical disadvantage, because it has to be curved upwards (according to Laplace’s law) in order to be effective.15 The axial direction of the diaphragmatic fibers is also lost by hyperinflation. They are directed medially or inward and have mainly expiratory action.16 The area of apposition between the costal fibers of the diaphragm and the inner rib cage becomes smaller,17 resulting in less effective rib cage expansion during inspiration. The thoracic elastic recoil that is normally directed outwardly, in resting lung volume, becomes directed inwardly with hyperinflation causing an added elastic load to the inspiratory muscles.18 Hyperinflation also places the ribs in a more horizontal position, causing the external intercostal muscles to act as an expiratory muscle instead of the normal inspiratory action.19 Finally, as the contractile forces increase in order to develop the inspiratory pressure necessary to inflate the hyperinflated lung, the respiratory muscle blood supply may be altered.20

A number of studies have been carried out to correlate dyspnea and respiratory muscle performance. It was well documented that the intensity of breathlessness is related to the activity and the strength of the inspiratory muscles.2–4,21,22 Although the patients studied had only slightly reduced inspiratory muscle strength and endurance (mean Pimax, 76 percent of predicted values), their increased work combined with impaired function might account for the patients’ sense of dyspnea. Therefore, there appears to be a rational therapeutic place for SIMT in patients with asthma, as an alternative to common acceptable medical therapy. If dyspnea is related to the increased work, combined with impaired function of the inspiratory muscles, then improved strength and endurance of those muscles must be followed by
Before training

After training

N.S

* Statistically significant

N.S Not significant

FIGURE 1. Diary card data for asthma symptoms judged by the patients on a scale 0, no symptoms; 4, very severe before and during the last two weeks of training. Values are mean (± SEM).

improving this symptom. In addition, circumstantial evidence exists to suggest that the inspiratory muscles may suffer damage during an acute asthmatic attack that may lead to acute respiratory failure. Improved strength and endurance of the inspiratory muscles may delay the onset of respiratory muscle fatigue and respiratory failure in those patients. However, there is no good explanation for the improvement in cough observed in our patients following the training period.

It is well established that respiratory muscles can be trained like other skeletal muscles, and several reviews have been published dealing with ventilatory muscle training.24,25 The new threshold inspiratory muscle trainers are designed to provide a specific, constant workload that is independent of variations in inspiratory flow rate. In a recent double-blind study, Larson and associates26 demonstrated that patients who trained with threshold trainer at 30 percent of their PImax for two months were able to increase their respiratory muscle strength and endurance. Therefore, it is not surprising that all our patients who trained with the threshold pressure breathing device improved their inspiratory muscle strength and endurance. The improved performance of the inspiratory muscles was associated with improvement in all of the clinical parameters recorded by us. In addition, when assessing the results of the present study, it is important to take in account that five of six patients in the training group who were receiving systemic corticosteroids when entering the study stopped the treatment during the training period without any clinical

FIGURE 2. Change in number of hospitalizations or emergency department visitings for asthma, days of absence from school or work, and inhaled β2-agonist consumption before and during the last three months of training. Values are mean (± SEM).
deterioration. This, by itself, might improve respiratory muscle performance, as it is known that systemic corticosteroids may have an adverse affect on those muscles. However, the improvement in inspiratory muscle performance, in our study, was seen much before the corticosteroids therapy was stopped. An alternative explanation for the improvement in asthma symptoms and the reduced usage of bronchodilators observed in our patients could be that subjects became desensitized to the sensation of dyspneas experienced with increased airway resistance and because of desensitization they were less bothered by dyspnea.

The mechanism underlying the improvement in lung functions, observed in our patients, is not clearly understood. The absolute volume of the total lung capacity and its subdivisions is determined by the balance between the elastic forces and the inspiratory muscles. Thus, the increase in FVC observed in our patients might be related to the enhanced strength of the inspiratory muscles following training. The resistance to airflow varies with lung volume, and it is less at higher lung volumes. Thus, the increase in flow rates is probably secondary to the change in lung volumes rather than a real change in airway resistance. It is still possible that the increase in FVC and FEV₁, presumably with reductions in the degree of hyperinflation, had an advantageous affect on the respiratory muscles. However, such degree of improvement in inspiratory muscle performance had not been observed by us, in a previous study, just by decreasing the degree of hyperinflation in patients with bronchial asthma. Lung volume measurements would obviously be of interest in these patients. However, lung volumes were not measured in this study.

In conclusion, we believe that SIMT may prove to be a complementary or alternative and more physiologic therapy with the aim of reducing systemic corticosteroids requirement and inhaled β₂-agonist consumption and improving the control of asthma symptoms in patients with asthma.

REFERENCES
1 Killian KG, Campbell EJM. Dyspnea and exercise. Ann Rev Physiol 1983; 45:465-79