Communications for this section will be published as space and priorities permit. The comments should not exceed 350 words in length, with a maximum of five references; one figure or table can be printed. Exceptions may occur under particular circumstances. Contributions may include comments on articles published in this periodical, or they may be reports of unique educational character. Specific permission to publish should be cited in a covering letter or appended as a postscript.

Diagnosis of Tracheopathia Osteochondroplastica

To the Editor:

We read with great interest the paper by Hodges and Israel (Chest 1988; 94:842-44). Our attention was drawn to two aspects that we consider of importance: 1) the failure to culture the biopsies, and 2) the conclusion that CT scans findings are pathognomonic, with only two cases to support this statement.

Recently, we have published our experience in tracheopathia osteochondroplastica (TO), based on the survey of 8,700 fiberoptic bronchoscopies (FOB). TO represented 0.09 percent of cases and was distributed evenly between men (five cases) and women (three cases), with a mean age of 54 ± 12 years (SD). The clinical picture was relapsing pneumonia (four cases), cough (three cases), hemoptysis (three cases) and dyspnea (two cases). Chest x-ray film was abnormal in seven patients (five with alveolar pattern and two with suspected TO); conventional tomography suggested the diagnosis in three cases and FOB showed pathologic findings in the trachea of all patients and in main bronchi in five of them. Endoscopically, we found hyperemic, firm, sometimes petrous vegetant lesions with a sessile base and easy bleeding at biopsy (which remitted with the instillation of epinephrine solution, 1:20,000). There was variable extension of the lesions, with or without solution of continuity among them. Anterior and lateral walls of the lower third of the trachea were affected in all patients. Biopsy was performed with difficulty and gave a histologic diagnosis (osseus islets in the corion) in six cases. Culture was positive in three biopsies (two with Klebsiella ozaenae and one with M tuberculosis); these patients were treated accordingly.

We believe that the diagnosis of TO requires histologic proof; this can be accomplished by FOB biopsy. The importance of this step is enhanced by the possibility of cultures that, if positive, must be followed by the appropriate treatment, especially if we take into account the possibility of an etiopathogenic relationship between these infections and TO. Imaging techniques are complementary methods that can lead to suspected TO, but (probably) do not provide pathognomonic data and therefore do not exclude the need for histopathologic confirmation.

Esteban Pérez-Rodríguez, M.D.; Nelson Núñez, M.D.; Carlos Alcarado, M.D.; Antonio Golpe, M.D.; Ciro Casanova, M.D.; José Zapatero, M.D.; and Luis Fogue M.D.
Departments of Pneumology, Thoracic Surgery and Pathology, Hospital Ramon y Cajal, Madrid, Spain

Sleep Apnea, Hypothyroidism and Pulmonary Edema

To the Editor:

We read with interest the article by Willms and Shure in which they review 25 cases of pulmonary edema associated with upper airway obstruction. Recently, we treated a 62-year-old patient with obstructive sleep apnea who developed pulmonary edema due to upper airway obstruction. We found signs of hypothyroidism and low thyroid hormones.

The patient had a seven-year history of intermittent episodes of "noisy breathing" during sleep that were treated with bronchodilator therapy. The patient had an active life. The day of admission, the patient had one of these episodes which was more severe than usual. Brought to the hospital by his family, he was in obvious respiratory distress with minimal respiratory excursions. The patient was transferred to the ICU. The trachea was intubated and controlled mechanical ventilation initiated. Arterial blood gases (on a FiO2 of 1) were: Po2 197 mm Hg, PCO2 87, pH 6.96, Hco3 18.6 meq/L, HbCO 1.2 percent, and HBO2 97 percent. Blood pressure was 90/60 mm Hg, pulse rate 100 bpm, temperature 37° C. A Swan Ganz catheter was inserted: pulmonary artery pressure was 14/6

REFERENCES

2. Sakula A. Tracheobronchopathia osteochondroplastica, its relationship to primary tracheobronchial amyloidosis. Thorax 1968; 23:105-10