Continuous Noninvasive Monitoring of Respiratory Rate in Critically Ill Patients*

Bruce Krieger, M.D., F.C.C.P.; Drew Feinerman, M.D.; Amy Zaron; and Frank Bizousky, B.A.

Respiratory rate is a sensitive clinical parameter in a multitude of pulmonary diseases, especially in the critical care setting. In order to validate the routine recording of the respiratory rate in the intensive care unit, we compared the values obtained from the nursing records with the breathing frequency continuously recorded by a prototype microprocessor system using respiratory inductive plethysmography. We found a significant (≥20 percent) error in the staff's monitoring of respiratory rate one third of the time. In addition, we demonstrated the ease and reliability of using this prototype system as a continuous, noninvasive, long-term respiratory monitor in the intensive care unit.

Recent advances in electronic and computer technology have had a great influence on respiratory monitoring in the setting of the intensive care unit; however, the simple observation of respiratory rate remains the first and often the most sensitive marker of acute respiratory dysfunction. In a recent review of current techniques in respiratory monitoring, Eberhart and Weigelt rated respiratory rate higher than any other invasive or noninvasive measurement. Unfortunately, the reliability of respiratory rate as routinely recorded, coupled with the relative infrequency of its measurement, has cast doubt on its importance in making decisions. Respiratory inductive plethysmography has been shown to accurately monitor breathing frequency noninvasively in spontaneously breathing subjects, as well as in mechanically ventilated patients. We used a prototype microprocessor system which continuously displayed and recorded respiratory rate and compared these values to the observations recorded by the nursing personnel during the routine care of intubated patients in the intensive care unit of a large, private teaching hospital.

Materials and Methods

Subjects

Ten consecutive adults who were being weaned from mechanical ventilation were prospectively studied during a one-month period. There were eight male and two female patients, with a mean age of 71 years. Diagnosis included cardiogenic pulmonary edema (three), noncardiogenic pulmonary edema (two), closed head injury (one), stroke (one), and chronic obstructive pulmonary disease with pneumonia (three). Days on mechanical ventilation ranged from one to 32, with a mean of ten days.

Respiratory Inductive Plethysmography

Direct current-coupled respiratory inductive plethysmography (Respitrace) has been described in detail. Basically, changes in the cross-sectional area of the rib cage and abdomen alter the self-inductance and oscillatory frequency of coils encircling the respective compartments. The signals generated were recorded on a prototype Z80A-based microprocessor system (Respigraph). The calibration of the device in a single position was done automatically by the microprocessor system using a modification of the loop-area method. This qualitative calibrating procedure does not require breathing into an external volume standard (such as a spirometer). The microprocessor continuously computed respiratory frequency by sampling the respiratory inductive plethysmograph's sum signal at 60 points per second and displayed each breath for a five-minute epoch on an ink jet printer. It also computed and displayed the average number of breaths per minute over this five-minute period.

Protocol

Each patient was monitored for 12 to 24 hours while in the medical or surgical intensive care unit. Nurses were unaware that a formal study was in progress. Routine care for patients in the intensive care unit included the recording of respiratory rate every one to two hours on a flow sheet. These flow sheets were then reviewed by an independent observer. Each subjective recording of the respiratory rate by the nursing staff was compared to the objective recording of that rate by the respiratory inductive plethysmograph during the same five-minute period by confidence interval estimation. To assure stability of the respiratory rate during each of the five-minute epochs, the coefficient of variation (standard deviation/mean × 100 percent) for each of these periods was determined.

Results

A total of 113 comparisons were collected and analyzed (Fig 1); most were taken with the patient on a ventilator's intermittent mandatory ventilation rate of...
Changes in respiratory rate are the hallmark of many diseases which occur in the setting of the intensive care unit (eg, pulmonary embolus, respiratory muscle fatigue, adult respiratory distress syndrome, barotrauma, cardiogenic pulmonary edema, sepsis, drug overdose, and other central-breathing-pattern abnormalities). Additionally, as recently demonstrated by Meek and Tyler, accurate assessment of the respiratory rate during the period immediately before and after extubation is a good predictor of weaning success.

Paramount to the accuracy and resulting usefulness of any test is reliability. Unfortunately, respiratory rate is usually measured for only 15 seconds, with the result multiplied by four. This practice can easily overestimate or underestimate the true value by at least 4/min, thus leading to an error of 14 to 20 percent at a rate of 24/min (which is considered by Gravelyn and Weg to be the upper limit of normal). In the present study, we found an error of at least 20 percent in over one third of the 113 measurements recorded during routine monitoring of intubated patients (Fig 1). This error was even higher in intubated subjects who were not attached to ventilator alarm systems (Fig 2). In addition, of the 69 measurements which would be classified as “abnormal” (>24/min), the nursing estimates falsely reported 22 (32 percent) to be within normal limits.

Another drawback to the usefulness of the respiratory rate is the intermittency of its measurement. This problem is overcome when a patient is being mechanically ventilated by respirators equipped with a rate alarm; however, spontaneously breathing patients are only assessed by visual observation and intermittent analysis (such as pulmonary function or arterial blood gas tests). This is analogous to attempting to continuously monitor cardiac rhythm by intermittent recording of the pulse rate and electrocardiogram. Certainly, noninvasive respiratory monitors, such as respiratory inductive plethysmography with computer processing, have the potential to correct this inadequacy in respiratory monitoring.

Although suggested almost two decades ago, this is the first study to document that the estimation of
respiratory rate, even by highly trained staff in an intensive care unit equipped with other ventilator monitors, is often inaccurate. Rather than negating the usefulness of the respiratory rate in clinical practice, this study highlights the need for objective continuous monitoring of this important parameter for better care of the critically ill patient.

ACKNOWLEDGMENTS: We thank Dr. Marvin Sackner and Anne Belsito for their technical advice, Mrs. Annette Bethel for her secretarial assistance, and Mr. Hack Gazeroglu for his statistical analysis.

REFERENCES
3 Gravelyn TB, Weg JG. Respiratory rate as an indicator of acute respiratory dysfunction. JAMA 1980; 244:1123-25
5 Kory RC. Routine measurement of respiratory rate: an expensive tribute to tradition. JAMA 1957; 165:448-50