separating patients with severe (aortic valve orifices ≤ 0.08 sq cm) from nonsevere aortic stenosis is important because it allows sensitivity, specificity, and likelihood ratios to be determined for any cut-off value employed for a given noninvasive parameter. Bayesian analysis, taking into account not only sensitivity and specificity but also "pre-test likelihood" of having the disease, has been utilized previously in treadmill exercise testing for the prediction of coronary disease. 22,23 This type of approach, evaluating a combination of noninvasive tests in the context of the history and physical examination, provides a powerful tool in assessing the severity of aortic stenosis.

\textbf{Julius M. Cardin, M.D., F.C.C.P.;}
\textbf{Kerry J. Kaplan, M.D.; Sheridan N. Meyers, M.D.;}
\textbf{and James V. Talano, M.D., F.C.C.P.}

Northwestern University Medical Center.
Reprint requests: Dr. Cardin, Room 586 (Wesley), 250 East Superior Street, Chicago 60611

\section*{REFERENCES}

1 Wood P: Aortic stenosis. Am J Cardiol 1958; 1:553-571

\section*{Interpretation of Arterial Blood Gases}

While arterial blood gas measurements have become increasingly easy to obtain in recent years, their interpretation has become increasingly difficult, especially in the intensive care setting. This is because of heightening awareness that factors other than intrapulmonary abnormalities can affect the arterial P_{O_2} and P_{CO_2}. Most of us would like to use blood gas measurements as an index of the state of the lungs, at least to the extent that improved values can be equated to improved lung function and vice versa. The difficulty is that arterial P_{O_2} and P_{CO_2} reflect not only the state of the lung (i.e., shunt, ventilation-perfusion (VA/Q) inequality and incomplete diffusion equilibration), but also the conditions under which the lung is operating, that is, the composition of inspired gas and mixed venous blood.
Inspired PO_2 is usually easy to take into account. Thus, it is well appreciated that as FiO_2 is raised, hypoxemia due to V_A/Q mismatching or diffusion impairment is alleviated, while that due to shunting persists, particularly when the shunt is large. This nice theory can, however, be upset in several ways, many of which may not be evident just from the blood gas measurements themselves. Shapiro and colleagues (see page 138) address one such problem: the induction of atelectasis by the very breathing of enriched oxygen mixtures. The theoretical aspects of this phenomenon have been studied1,3 and center on the cessation of expiration in lung units of very low V_A/Q ratio, as first suggested by Briscoe and co-workers.1 The article by Shapiro and coauthors adds to the body of experimental evidence on this subject. Oxygen-induced atelectasis, in turn, results in two highly undesirable problems—confusion in the assessment of the state of the lungs, and potential deterioration of the patient. Another example of a problem incurred by high oxygen concentration breathing occurs in patients with chronic obstructive pulmonary disease where some poorly ventilated lung units wash out nitrogen, (N_2) very slowly. In addition, N_2 levels in these units may transiently rise to very high values through the concentrating effect of rapid O_2 transfer into the blood as alveolar Po_2 rises. As a result, arterial Po_2 rises very slowly during 100 percent oxygen breathing, and even after 30 minutes it may be sufficiently low so as to falsely suggest shunt fractions of 10-20 percent3 when no shunt, in fact, exists.

Mixed venous Po_2 (PrV_2) must also be taken into account in interpretation of blood gases, as was elegantly shown by Pontoppidan and co-workers several years ago.4 Since mixed venous Po_2 is considerably less accessible than inspired Po_2, it is accordingly even more important to understand how great a role PrV_2 can play in determining arterial Po_2. Whatever the cause, a fall in PrV_2 results in a fall in arterial Po_2 in a patient with a fixed amount of intrapulmonary abnormality, and vice versa. It is therefore impossible to interpret a change in arterial Po_2 in a given patient without knowledge of the mixed venous Po_2. It should be pointed out that other factors held constant, PrV_2 will fall as (a) cardiac output falls, (b) O_2 consumption rises, (c) hemoglobin content falls, (d) alveolar ventilation falls, and (e) intrapulmonary disease worsens (because of worsening shunt, V_A/Q relationships, or incomplete diffusion equilibration). It is not necessary to spell out the myriad ways in which cardiac output, O_2 consumption, hemoglobin content, alveolar ventilation, or lung disease can each change, sometimes simultaneously and in opposite directions, so as to complexly alter arterial Po_2. Thus, it is comforting to see that at least some of the data reported by Shapiro and associates are supported by direct mixed venous Po_2 measurements. In the remaining examples, the results must be interpreted with caution because PrV_2 was assumed rather than measured.

As usual, we are left in a dilemma. Inspired Po_2 is not difficult to monitor, but estimation of mixed venous Po_2 generally requires direct sampling through a pulmonary artery catheter, the placement of which carries the risk of many unlikely, but potentially dangerous, complications. We then have to balance the need for accurate and scientifically meaningful analyses of pulmonary gas exchange against the risk of placement of the pulmonary artery catheter in the individual instance.

\textit{Peter D. Wagner, M.D.
La Jolla, California}

\textbf{References}\n\begin{itemize}
\item 2 Dantzker DR, Wagner PD, West JB: Instability of lung units with low V_A/Q ratios during O_2 breathing. J Appl Physiol 38:886-895, 1975
\end{itemize}