A New Therapeutic Application of the Fiberoptic Bronchoscope

To the Editor:

Since the initial description of fiberoptic bronchoscopy, its multiple diagnostic advantages have become well known. Recently, its therapeutic possibilities have also been discovered. This is a report of the successful closure of a bronchopleural fistula by means of a fiberoptic bronchoscope, using the tissue glue, methyl-2-cyanoacrylate (Histoacryl N Braun Melsungen).\(^1\)

CASE REPORT

The patient is a 44-year-old white man who was followed up because of pulmonary fibrosis secondary to ankylosing spondylitis.\(^2\) An aspergilloma developed in his fibrotic right upper lobe and led to extensive clinical symptoms, with fever and loss of weight. At this time, his vital capacity was reduced to only 1,680 ml (33.4 percent of the predicted value).

An attempt was made to remove the aspergilloma by surgery. A thoracoplasty was performed, resecting the first to fifth ribs. On the fourth postoperative day, an increasing bronchopleural fistula developed, even though initially all bronchopleural connections had been closed in the very fragile tissue of the upper lobe. Complete collapse of the lung could be prevented by suction drainage; however, an increasing air leak led to clinical worsening, with dyspnea.

The possibility of a repeat surgical procedure with closure of the fistula was rejected because of high operative risk with small prospective chance of success. Scintiscans demonstrated that the upper lobes were no longer perfused; thus, we decided to definitely occlude the bronchi of the upper lobe.

To the apical and the posterior upper bronchi had been filled with tissue glue. A special difficulty consisted of the fact that solidification of the glue occurred in about 10 seconds. Therefore, rapid injection through the 70-cm Teflon catheter was necessary.

After the apical and the posterior upper bronchi had been filled in this way, a drastic improvement occurred. The dyspnea and the leak almost completely disappeared; however, during the next days the right upper posterior bronchus developed a new leak. This was occluded in an additional session using the same technique, which again led to a further clinical improvement. Even though a complete expansion of the lung was not achieved after the suction drainage was stopped, the residual cavity secondary to thoracotomy and thoracoplasty could be kept minimal.

DISCUSSION

This case demonstrates that the fiberoptic bronchoscope provides a useful therapeutic aid in desperate situations with bronchopleural fistulas, where improvement by surgical approach cannot be expected.

Dr. Wilfried Hartmann

and Dr. Volker Rausch

Department Innere Medizin

Abteilung Pneumologie

Medizinische Hochschule Hannover

Krankenhaus Oststadt

Hannover, Federal Republic of Germany

Reprint requests: Dr. Hartmann, Podbielskistrasse 380, Oststadt Krankenhaus MIH, 3000 Hannover, Federal Republic of Germany

REFERENCES

The Flipped Pacemaker

Radiographic Diagnosis of a Cause of Malfunction of Rechargeable Pacemakers

To the Editor:

Previous literature has described the radiographic diagnosis of malfunction of the various battery-operated cardiac pacemakers.\(^1\) In response to the continuing search for cardiac pacemaker generators with increased in vitro longevity, a transcutaneously rechargeable power source was developed by the Applied Physics Laboratory of Johns Hopkins University.\(^2\) Since February 1973, approximately 4,000 such pacemakers (Pacemaker Systems, Inc.) have been implanted, with a highly satisfactory performance record and excellent patient accept-

CHEST, 71: 2, FEBRUARY, 1977
any position that induces satisfactory electromagnetic coupling for charging, the flipping over of the pacemaker can be easily recognized radiographically.

Case Report

In September 1975, a 44-year-old moderately obese woman had a rechargeable cardiac pacemaker placed in the left subclavicular subcutaneous fat for third-degree heart block. Endocardial electrodes were introduced into a branch of the left subclavian vein and advanced to the apex of the right ventricle. Beginning in December 1975, the patient noted difficulty in charging the generator. By palpation, it could not be determined whether the unit had flipped over.

Radiographs obtained on Feb 11, 1976 revealed the electrode lead to be exiting the lateral aspect of the pacemaker, the position the lead should be in if the pacemaker were placed with the charging coil facing externally (Fig 1A). However, on Feb 18, 1976, the electrode lead was noted to be exiting the medial aspect of the pacemaker (Fig 1B), indicating that the pacemaker had turned over, with its charging coil now facing the chest wall. The patient had not manually manipulated the generator.

On Feb 20, 1976, the pacemaker was repositioned within a new and tighter subcutaneous pocket, and the original pocket was obliterated. The original pocket was found to have been unusually large, permitting rotation of the generator. There was no inflammation or effusion in the pocket. Recovery was uneventful.

Discussion

If a rechargeable pacemaker in the left anterior portion of the chest is in normal position, the electrode lead will exit the pacemaker cephalad along its lateral aspect; if the electrodes exit cephalad along the medial aspect, the pacemaker has turned over and is no longer rechargeable transcutaneously. Serial films are unnecessary to make this diagnosis. If the pacemaker has rotated 180° without flipping over, the charging surface will still be anteriorly directed, but the lead will exit the pacemaker pack medially and caudally; we have not observed this theoretic complication.

This simple radiographic diagnosis of the flipped pacemaker has not been previously reported; the patient reported here is the first to encounter this problem among the 15 who have undergone placement of rechargeable pacemakers at our institution. As with any other pacemaker, and in anticipation of this complication, postoperative baseline posteroanterior chest radiographs are indicated before the patient is discharged from the hospital.

Barbara M. Rolhtng, M.D.
Department of Radiology
John C. Hutchinson, M.D.
Departments of Medicine and Surgery
and W. Richard Webb, M.D.
Department of Radiology
University of California School of Medicine
San Francisco

Reprint requests: Dr. Rolhtng, Department of Radiology,
M-380, University of California, San Francisco 94143
Grandpa used to stay home with his asthma.

BRETHINE® breathes more activity into days and more rest into nights.

Please see summary of full prescribing information on the back of this page.
Brethine® brand of terbutaline sulfate Tablets 5 mg., Tablets 2.5 mg. Before prescribing or administering, please consult complete product information, a summary of which follows:

Actions:
- Tablets contain 5 mg. (equivalent to 4.1 mg. of free base) or 2.5 mg. (equivalent to 2.05 mg. of free base) of Brethine, brand of terbutaline sulfate.

Indications:
- As a bronchodilator for bronchial asthma and for reversible bronchospasm which may occur in association with bronchitis and emphysema.

Contraindications:
- Known hypersensitivity to sympathomimetic amines.

Warnings:

Usage in Pregnancy:
- The safety of the use of Brethine, brand of terbutaline sulfate, tablets is not presently recommended for children below the age of twelve years due to insufficient clinical data in this pediatric group.

Precautions:
- Brethine, brand of terbutaline sulfate, should be used with caution in patients with diabetes, hypertension, and hyperthyroidism.

Adverse Reactions:
- Commonly observed side effects include nervousness and tremor. Other reported reactions include headache, increased heart rate, palpitations, drowsiness, nausea, vomiting, and sweating. These reactions are generally transient in nature, usually do not require treatment, and appear to diminish in frequency with continued therapy. In general, all side effects observed are characteristic of those commonly seen with sympathomimetic amines.

How Supplied:
- Round, scored, white tablets of 5 mg. in bottles of 100 and 1,000 and Unit Dose Packages of 100; oval, scored, white tablets of 2.5 mg. in bottles of 100.

Almost twice as effective as some other bronchodilators.

Brethine 5 mg was almost twice as effective as aminophylline 400 mg in a single-dose study. Brethine is twice as effective as ephedrine. And it has been shown to be more effective than metaproterenol.

If Brethine is added to theophylline, dosage should be titrated. Tablets of 2.5 mg and 5 mg are available.

Action may last up to 8 hours in some patients.

Brethine can provide more comfortable breathing with one tablet at bedtime, upon arising, and at midafternoon (at approximately six-hour intervals). Brethine contains no respiratory depressants (tranquilizers, sedatives or alcohol).

Minimal cardiac effect.

Brethine produces proportionally greater changes in pulmonary function than in heart rate or blood pressure.

Note: Patients should be advised that they may experience mild tremor when Brethine therapy is initiated. With continued therapy, tremor usually diminishes while bronchodilation remains highly effective.
CALL FOR ABSTRACTS

ORIGINAL INVESTIGATIONS

The Program Committee invites submission of abstracts (circulation, respiration, thoracic-cardiovascular surgery, and related systems) for presentation at the 1977 Annual Meeting in Las Vegas, Nevada, October 30-November 3, 1977. Membership in the College is not a prerequisite to participation in the program. Investigators from outside the United States are welcome, provided abstracts and presentations are in English. The Scientific Program Committee will communicate their decisions to all applicants within six weeks after the deadline, May 1, 1977. Presentations will be limited to 10 minutes with 2 minutes for discussion. Abstracts accepted for presentation will be published in CHEST. A mandatory requirement is that material submitted will not be published or presented elsewhere prior to November 3, 1977.

1. Abstracts should be not more than 150 words in length and typed double spaced. Please provide an original and four carbon copies.
2. Include the title of the paper, full first and last names (not initials only) of authors and institution where work was performed.
3. Provide full address where correspondence should be directed.
4. Identify individual who will present the paper.

DEADLINE: MAY 1, 1977

The same abstract may be submitted for only one section of the program, i.e., either the Original Investigation section, or Cecile Lehman Mayer Research Award.

CALL FOR SCIENTIFIC EXHIBITS

The American College of Chest Physicians will present scientific exhibits as a major feature of the Annual Fall Scientific Assembly. The exhibit space will be in the same area as the lecture rooms. Please request scientific exhibit application forms from the Chairman, Scientific Exhibit Committee, American College of Chest Physicians, 911 Busse Highway, Park Ridge, Illinois 60068. Exhibitors need not be members of the college.

DEADLINE: MAY 1, 1977

CALL FOR SCIENTIFIC MOTION PICTURES

The Motion Picture Committee for the Annual Fall Scientific Assembly welcomes submission of scientific motion pictures for their review. Several sessions have been scheduled for presentation of films and discussion periods. Please write for film application form: Chairman, Motion Picture Committee, 911 Busse Highway, Park Ridge, Illinois 60068.

DEADLINE: MAY 15, 1977

CECILE LEHMAN MAYER RESEARCH AWARD PAPERS

The Cecile Lehman Mayer Research Award for basic research is open to physicians of residency or fellowship status or under age 35. The sum of $1,000 will be awarded the investigator presenting the best paper on pulmonary diseases, and $1,000 will be awarded the investigator presenting the best paper on cardiovascular disease. Abstracts in triplicate (250 words) of unpublished material should be submitted by May, 1, 1977 to the Chairman, Research Forum, American College of Chest Physicians, 911 Busse Highway, Park Ridge, Illinois 60068.

DEADLINE: MAY 1, 1977
PATIENT WEIGHT

An important dimension in patient care.

Too often weight gain or loss data is unavailable. Moving critically ill patients is cumbersome and disturbing. But there is a way to get accurate weight information without moving the patient. Hundreds of hospitals and dialysis centers get this information routinely from the proved Aimex Patient Weighing System because it requires no movement of the patient, adapts to any bed or chair, and is simple to operate, accurate, dependable.

Write or call today for illustrated brochure.

Aimex Company, 177 State Street
Boston, MA 02109 Tel: 617-227-7090

Plan to attend...

American College of Chest Physicians

☆ 43rd ANNUAL SCIENTIFIC ASSEMBLY

☆ MGM Grand Hotel
Las Vegas, Nevada
Oct. 30 - Nov. 3, 1977

A Unique New Product from Surgitek

The unique Carden Bronchoscopy Tube, new from Surgitek® is the first endotracheal tube designed specifically to aid the physician with flexible fiberoptic bronchoscopy procedures.

When used with the adapter, it is designed to facilitate the concurrent administration of anesthetics (or ventilation) and the examination of the patient with a flexible fibroptic bronchoscopy instrument.

It reduces the flow resistance encountered with endotracheal tubes of ordinary design by 50 per cent.¹

In addition, this 100 per cent Silicone tube (resterilizable and reusable) has a super soft low trauma Silicone cuff which reduces possible tracheal damage during and after intubation.

The unique swivel connector also is an integral design feature (available individually) of Surgitek® Bronchoscopy Tube which allows positive pressure ventilation of the patient while flexible fiberoptic bronchoscopy is being undertaken, but creates minimal resistance to the up and down movement of the bronchoscope.

There is no other tube specifically available for this use, plus, the Carden unit offers the safety, convenience and comfort that you require for your patients. Available in 8.0 and 8.5 I.D. sizes.

REFERENCE

MEDICAL ENGINEERING CORPORATION
3037 Mt. Pleasant Street/Racine, Wis. 53404/(414) 639-7205/CABLE: MEDENGCO

When writing please mention CHEST
REFERENCES

Thin-Walled Cavitary Bronchiolar Carcinoma

To the Editor:

It is well established that bronchogenic carcinoma of the lung may appear with radiographic evidence of cavitation.1,2 This is the first report of thin-walled cavitary bronchiolar carcinoma.

CASE REPORT

We recently saw a 58-year-old woman who had been followed in the Dermatology Clinic because of an unusual skin lesion. She was referred to us because her chest x-ray film showed a thin-walled cavitary lesion in the left lower pulmonary field (Fig 1). She had smoked cigarettes for many years and admitted to a 5.4-kg (12-lb) weight loss. Physical examination was unrevealing. Laboratory data were not helpful for diagnosis. Examination with the flexible fiberoptic bronchoscope under fluoroscopic guidance showed normal findings. The patient subsequently underwent a left pneumonectomy. Microscopic examination revealed bronchiolar carcinoma.

DISCUSSION

Cavitary pulmonary lesions of a thin-walled variety are not usually considered to be neoplastic. The Mayo Clinic series from 19601 reported only three cases. Cavitary bronchiolar carcinoma is also very unusual. We have found only five cases in our review of the literature,2-4 two of which involved mycetomas.

The pathogenesis of the development of cavities in carcinoma of the lung has been reviewed by others.1-2,5 We would suggest that a thin-walled cystic lesion of this type may be explained by the lepidic nature of this cell type. In the proper clinical setting, therefore, the presence of a thin-walled cavity of the lung does not exclude the possibility of carcinoma as a diagnosis.

MAJ Claude J. Telli, MC, USA
MAJ Robert G. Hooper, MC, USA
Walter Reed Army Medical Center, Washington, DC
and MAJ Cash R. Beechler, MC, USA
William Beaumont Army Medical Center, El Paso, Tex

Reprint requests: MAJ Telli, Pulmonary Disease Service, Walter Reed Army Medical Center, Washington, DC 20012

REFERENCES

Continuous Heart Murmur Following Coronary Arterial Bypass Surgery

To the Editor:

We previously reported a patient with a continuous heart murmur following coronary arterial bypass graft surgery1 and speculated that it might have been produced by turbulent flow related to the graft. Sass2 questioned the cardiac origin of the murmur and suggested that it emanated from a fistula in the chest wall. During subsequent reevaluations of this patient, the auscultatory findings were unchanged by simultaneous digital compression of various sites on the chest wall,