FIGURE 1. Medial and superficial position of left atrium (LA) permits excellent exposure of left atrioventricular valve. LV, Arterial ventricle, anatomic right ventricle; RV, venous ventricle, anatomic left ventricle; RA, right atrium; Ao, aorta; CxA, circumflex artery; and ADCA, anterior descending coronary artery.

(v wave, 70 mm Hg; and y wave, 20 mm Hg). Oximetric data demonstrated absence of left-to-right shunt.

Angiocardiographic studies showed that the right atrium and superior and inferior venae cavae were in their normal positions and to the right of the left atrium (situs solitus). The venous ventricle was situated on the right side and posterocephalad to the arterial ventricle. The arterial ventriculogram demonstrated the presence of trabeculae and a crista supraventricularis compatible with an anatomic right ventricle. The systolic and diastolic volumes were greatly augmented. The aorta arose from the arterial ventricle and lay to the left and anterior of the main pulmonary artery. The convexity of the ascending aorta lay to the left of the spinal column. The aortic valve was situated cephalad to the pulmonary arterial valve and without continuity with the left atrioventricular valve.

Surgery was performed on Feb 1, 1975. The heart was approached through a median sternotomy. The external diameters of the ascending aorta and main pulmonary artery were 25 and 65 mm, respectively. The right atrium, the venous ventricle, and the inferior vena cava were situated posterior to the arterial ventricle. Cannulation of the superior vena cava was performed through the right atrial appendage, and the inferior vena cava was cannulated via the left femoral vein. The left-sided atrioventricular valve was tricuspid; it was easily replaced through the dilated and superficial left atrium with a No. 29 Björk prosthesis (Fig 1).

During the early postoperative period, the patient required digitals for the treatment of cardiac failure and tachyarrhythmia. The patient was discharged from the hospital on Feb 20, 1975 in good condition. A follow-up in July 1975 confirmed this result.

DISCUSSION

This type of cardiac malrotation has been called mixed dextrocardia with ventricular inversion,1 and dextrocardia with situs solitus and l-transposition.2 Corrected transposition of the great vessels associated with cardiac dextrorotation3 was the most frequent type of dextrocardia, occurring in 29 percent (15) of 51 autopsied cases.4 Frequently, in patients with inversion of the ventricles, the great vessels are also inverted and, in addition, transposed.

I insist that in corrected transposition of the great vessels with cardiac dextrorotation, replacement of the left atrioventricular valve can be performed easily from a technical standpoint. On the contrary, in corrected transposition associated with mirror-image dextrocardia (synonyms, mixed dextrocardia with atrial inversion; dextrocardia with situs inversus and d-transposition), exposure of the left atrioventricular area may be rather difficult.5

Domingo Liotta, M.D., F.C.C.P.
Hospital Italiano
Buenos Aires

REFERENCES

Blood Gas Analysis during Hemodialysis

To the Editor:

We read with interest the article entitled “Evidence for Pulmonary Microembolization during Hemodialysis” by Bischof et al in the March issue (Chest 67:335-337, 1975); however, we have published data which are at variance with their findings and interpretation. Measurement of respiratory gas exchange, as well as blood gas levels, reveals that...
The new "one hand" bronchofiberscope for examination of the entire bronchi—suction, biopsy, cytology, photography—with even greater maneuverability.

OLYMPUS BF-B2 BRONCHOFIBERSCOPE.

Olympus, world leader in flexible fiberoptic instruments, offers a compact, one-hand control section and high resolution optics which give you clear, bright views and photography of the bronchi. A thin, 5.8 mm, flexible insertion tube insures maximum patient comfort and a choice of introduction methods. Call an Olympus representative or write Olympus Corporation of America, Medical Instrument Division, 2 Nevada Drive, New Hyde Park, N.Y. 11040.

DISTAL END DIAMETER: 5.2 mm
SUCTION BIOPSY CHANNEL: 6F (2 mm)
TIP ANGULATION: 130° up and 130° down
LENGTH: 605 Millimeters

TOP: Necrosis substance of a tumor in the right upper lobe.
BOTTOM: Taken while examining the subsegmental bronchi.
A potent, effective bronchodilator with an onset of action in minutes—a duration of efficacy for hours

Metaprel®

(metaproterenol sulfate)

metered dose inhaler

15 mg/cc (approximately 0.65 mg delivered with each metered dose)

WORKS FAST
Metaprel is a potent beta-adrenergic bronchodilator with a rapid onset of action.

WORKS LONGER—1 TO 5 HOURS
In controlled studies, a 20% or greater increase in FEV₁ was demonstrated for 1 to 5 hours following a single dose of 2 to 3 inhalations.*

EASY ON YOUR PATIENTS
In clinical studies on over 1100 patients, only 1% had to discontinue therapy because of adverse reactions.

*In repetitive-dosing studies (up to q.i.d.), the duration of effect for a single dose has ranged from about one to two-and-one-half hours. Present studies are inadequate to explain this divergence.

This same potent, single entity bronchodilator is also available in tablet and syrup forms.

Metaprel®
(metaproterenol sulfate)
20 mg Tablets

Metaprel®
(metaproterenol sulfate)
Syrup 10 mg/5 ml

See adjoining column for prescribing information.
Brief Prescribing Summary

Metaprel® Metered Dose Inhaler
(metaproterenol sulfate)
15 mg/cc (approximately 0.65 mg delivered with each metered dose)

Indications: Bronchial asthma and reversible bronchospasm associated with bronchitis and emphysema.

Contraindications: Cardiac arrhythmias associated with tachycardia. Do not use in children under 12 (insufficient data on this age group).

Warnings: Excessive use of adrenergic aerosols is potentially dangerous. As with other sympathomimetic inhalation agents, fatalities have been reported with excessive use of metaproterenol sulfate; exact cause unknown. Cardiac arrest was noted in several cases. Paradoxical bronchoconstriction with repeated excessive use has been reported with other sympathomimetics and it is possible that it could occur with metaproterenol sulfate. Advise patients to contact physician if they fail to respond to their usual dose of sympathomimetic aerosol.

Precautions: Use extreme care when administering additional sympathomimetic drugs. Sufficient time should elapse before administering another sympathomimetic agent. Use great caution with metaproterenol sulfate and other sympathomimetics in patients with hypertension, coronary artery disease, congestive heart failure, hyperthyroidism and diabetes, or when there is sensitivity to sympathomimetic amines.

Usage in Pregnancy: Safety in pregnancy has not been established. Do not use except with caution, weighing patient benefit against potential risk to fetus. Studies in mice, rabbits and rats have shown no significant teratogenic effects of oral doses up to 50 mg/kg (310 times the recommended daily human inhalational dose). In rabbits, fetal loss and teratogenic effects have been observed at and above oral doses of 50 and 100 mg/kg, respectively.

Adverse Reactions: Adverse reactions such as tachycardia, hypertension, palpitations, nervousness, tremor, nausea, vomiting and bad taste have been reported. These reactions are similar to those noted with other sympathomimetic agents.

Symptoms of Overdosage: The symptoms of overdosage are those of excessive beta-adrenergic stimulation listed under Adverse Reactions.

How Supplied: Metered Dose Inhaler containing 225 mg metaproterenol sulfate (300 doses).

For complete details, please see the full prescribing information.

Under license from Boehringer Ingelheim GmbH

Plan to attend...

AMERICAN COLLEGE
OF CHEST PHYSICIANS

42nd ANNUAL
SCIENTIFIC ASSEMBLY

OCTOBER 24-28, 1976

ATLANTA, GEORGIA

THE PEAK EXPIRATORY FLOWMETER
THAT'S RIGHT FOR YOU

Searle flo
scope

The Searle flo-scope accurately measures peak expiratory flows from 50 to 860 LPM. Ideal for hospital, office and home use. Three mouthtubes included. $95. Check or money order with order prepaids postage. Others FOB Emeryville, Calif. California residents add sales tax.

SEARLE
Searle Cardio-Pulmonary Systems Inc.
Subsidiary of G. D. Searle & Co.
Box 8068
Emeryville, California 94662

When writing please mention CHEST
EMERSON
Pleural Suction Pump

★ Very high volume
Aspirates 30 liters a minute at a setting of -10 centimeters of water.

★ Low, constant pressure
Does not climb appreciably even with tubes wholly obstructed.

★ Long, dependable service
Designed for continuous operation.
Adaptable for 2-patient use.
Available in high or under-bed models.

Please request form 55-C

J. H. EMERSON COMPANY
CAMBRIDGE 40, MASS., U.S.A.

Alfred A. Richman 1976 ESSAY CONTEST
AN INTERNATIONAL COMPETITION FOR THE UNDERGRADUATE MEDICAL STUDENT

The annual contest was instituted in 1950 in the interest of motivating and encouraging scientific inquiry in respiration and circulation among undergraduate medical students. The contest offers medical students throughout the world the opportunity to submit, in open competition, their essays on scientific investigation.

Three cash prizes totaling $1,750 are awarded annually. The medical school attended by the first prize winner receives a trophy inscribed with the name of the winner and the medical college.

The essay may be an original laboratory investigation or a research paper on some clinical aspect of cardiopulmonary medicine or surgery. A thesis on undergraduate medical education in the realm of circulation and respiration is also an acceptable theme.

All essays are coded and independently judged by four physicians specializing in cardiovascular and pulmonary diseases. The judges will evaluate the essays on merit alone, with no knowledge of author or school.

Announcements of the winners will be made following the decision of the judges in May, and subsequently, awards will be presented at the Annual Meeting of the College to be held in Atlanta, Georgia, October 24-29, 1976.

Suggested length of the essays is 2,000 to 2,500 words. The deadline for submitting manuscripts is March 31, 1976.

Write for an application form and/or additional information from: Committee on College Essay, American College of Chest Physicians, 911 Busse Highway, Park Ridge, Illinois 60068.

When writing please mention CHEST
due to an increase in oxygen consumption (V_{O_2}) and a decrease in carbon dioxide production (V_{CO_2}), the respiratory quotient (V_{CO_2}/V_{O_2}) falls from a normal mean of 0.82 to about 0.65. These changes occur early during hemodialysis and persist at least one hour after dialysis. When alveolar oxygen pressure is calculated from the measured V_{CO_2}/V_{O_2}, it decreases; arterial oxygen pressure (PaO_2) decreases, and no significant change in the alveolar-arterial oxygen pressure difference occurs. Our data are consistent with decreased alveolar ventilation and do not support a ventilation-perfusion abnormality which one would expect with microembolization.

Bischel and associates, however, do find that the use of filters prevents the significant fall in PaO_2 measured after dialysis. The reason for this is unclear and might be best approached by simultaneous measurement of both blood and respiratory gas levels.

Joseph M. Letteri, M.D.
Joel E. Sherlock, M.D.
and James W. Ledwith, M.D., F.C.C.P.
Renal and Pulmonary Divisions
Nassau County Medical Center
State University of New York at Stony Brook

REFERENCE

To the Editor:

Drs. Letteri, Sherlock, and Ledwith have commented on their observed changes in the alveolar oxygen pressure consequent to changes in the respiratory quotient. Our study was not designed to answer this question; and, indeed, it is most proper to measure the respiratory quotient if one were to point out changes in the alveolar-arterial oxygen pressure difference before, during, or after dialysis. Our study was designed to answer questions on the effect of a filter vs no filter. Our assumption of the respiratory quotient is then a systematic error which is effectively cancelled out by paired analysis.

We also note that the article by Sherlock et al1 describes the use of a specific commercial model of blood gas analyzer (Instrumentation Laboratories model 313). The function of various commercially available blood gas analyzers has been studied;2 the results are shown in Table 1.

We have repeatedly demonstrated that the specific model of blood gas analyzer used by Sherlock et al1 exceeds the estimate of arterial oxygen pressure (PaO_2) by an average of 11.5 mm Hg. Since this specific model of blood gas analyzer was used by these investigators, it is fair to assume that the data for PaO_2 reported by Letteri et al are also similarly in excess. Taking this fact into account, correction of their data would then agree with ours.

Margaret D. Bischel, M.D.
Lutheran General Hospital, Park Ridge, Ill
and John G. Mohler, M.D.
Los Angeles County-University of Southern California Medical Center, Los Angeles

REFERENCES

Ventricular Fibrillation Induced by a Defective Demand Pacemaker

To the Editor:

Although the occurrence of pacemaker-induced tachycardia or so-called "runaway" pacemakers is a rare event due to the modern design of pacemakers, it still may occur and has been seen in some pacemakers manufactured around 1972. The case we report here is that of a patient who, upon admission to the hospital, presented with a pacemaker rate of 210 beats per minute, which increased to 2,000 beats per minute within five minutes, followed by loss of capture and ventricular fibrillation.

CASE REPORT
A 44-year-old man with congenital heart block had a unipolar pacemaker implanted in February 1973 in another hospital. A few months after implantation, the patient devel-