We have previously shown \textit{in vitro} that MCMV drives the synthesis of PE more efficiently than HCMV or MLP, both in human and rodent epithelial cells and fibroblasts. The aim of this study was to assess \textit{in vivo} the comparative strength of these promoters.

Three replication-deficient recombinant Ad5 viruses (HCMV-PE, MLP-PE, MCMV-PE) were isolated and titrated. Sprague-Dawley rats were injected intratracheally with 0.3 mL of phosphate-buffered saline containing either 3×10⁵ (n=2), 1.5×10⁶ (n=2), or 3×10⁶ (n=2) plaque forming units. After either 2 or 5 days, the lungs were lavaged with phosphate-buffered saline. The BAL fluids were centrifuged and supernatant content of PE was assessed by enzyme-linked immunosorbent assay (ELISA). The left lung was snap-frozen in liquid nitrogen for Northern blot analysis of PE messenger RNA (mRNA).

Northern blot analysis of PE mRNA from lungs infected with HCMV-PE and MLP-PE (days 2 and 5) was negative. In contrast, MCMV-PE-infected lungs showed significant levels at day 5. These data were confirmed at the protein level by ELISA whereby BAL recovered from MCMV-PE-infected lungs (increasing doses) showed very high levels of PE at day 5 (71.1, 54.3, and 66.6 ng/mL, respectively). Interestingly, levels at day 2 were much lower (3.1, 13.7, and 6.9 ng/mL, respectively). No detectable levels (<0.5 ng/mL) of PE protein were present in BAL from lungs infected with HCMV-PE and MLP-PE (day 2 or day 5).

Our data show that, compared to HCMV and MLP, MCMV is a very potent promoter in rat lung tissue. We were able to detect significant levels of both PE mRNA and protein. We believe that our findings have important implications for the efficiency of gene transfer of anti-inflammatory molecules such as PE in rodent models of lung inflammation.

Surfactant Protein-B Deficiency

Lawrence M. Nogee, MD

(CHEST 1997; 111:1298-1355)

Pulmonary surfactant is the mixture of lipids and proteins needed to reduce alveolar surface tension at the air-liquid interface and to prevent end-expiratory atelectasis. An inability to produce sufficient quantities of surfactant due to immaturity is the primary cause of the respiratory distress syndrome (RDS) observed in infants born prematurely, and diminished surfactant function contributes to the pathophysiologic condition of ARDS.² While the phospholipid components of pulmonary surfactant are important in its surface tension-lowering properties, specific surfactant proteins have been identified that represent 77% of the predicted full complementary DNA sequence and contains a complete open reading frame. To study regulation of PGIS gene expression, this fragment was used as a probe for Northern blot analysis under a variety of conditions. Studies were performed to determine rat tissue-specific expression and expression during rat lung development. The \textit{in vivo} effects of steroid hormones on lung PGIS expression were examined in animals treated with corticosteroids, testosterone, and estrogen. The effects of antioxidant and lipopolysaccharide (LPS) administration on lung PGIS expression were evaluated. The isolated-perfused rat lung (a model of shear-stress) was used to elucidate the outcome of differing flow rates on lung PGIS expression.

The results of these studies indicate that the PGIS sequence across species is highly conserved. The rat gene is most strongly expressed in heart and lung, and recognizes a major messenger RNA species of 2.0 kilobase (kb) with two minor bands of 2.9 and 5.6 kb. Skeletal muscle shows a unique band of 4.4 kb. In lung development, PGIS synthase is upregulated late in gestation at day 21. PGIS gene expression is induced by corticosteroids, antioxidants, LPS, and shear stress. Testosterone increases gene expression, while estrogen has the opposite effect. These studies demonstrate the following: (1) rat PGIS synthase is closely homologous to the bovine and human genes; (2) multiple forms of transcripts exist and may represent alternative splicing or distinct isoforms; (3) the gene is expressed in rat lung late in gestation; (4) PGIS expression is induced by shear stress; (5) unlike cyclooxygenase, PGIS is induced by corticosteroids and antioxidants; and (6) testosterone increases gene expression while estrogen decreases expression. Using the rat model will enable examination of gene expression under a variety of conditions and offers the potential for gene therapy trials.

Rat Prostacyclin Synthase

Cloning and Regulation of Gene Expression in the Lung

Mark Ceraci, MD; David Shepherd, BS; Mark Moore, BA; Jennifer Vernon, BS; Jenny Allard, BA; John Shannon, PhD; and Norbert F. Voelkel, MD

(CHEST 1997; 111:1298)

Prostacyclin synthase (PGIS) is the final committed enzymatic step in the pathway of prostacyclin (PGI₂) production, occurring at a branch point where substrate (PGH₂) can be directed either toward prostacyclin, which affords protection, or thromboxane, which augments injury. The imbalance of prostacyclin and thromboxane is involved in the pathogenesis of several diseases, such as pulmonary hypertension, acute lung injury, and atherosclerosis. These studies were designed to pursue the molecular cloning and characterization of rat prostacyclin synthase.

An 1153-base pair fragment of the rat PGIS gene was cloned and sequenced in its entirety. This fragment represents 77% of the predicted full complementary DNA sequence and contains a complete open reading frame. To study regulation of PGIS gene expression, this fragment was used as a probe for Northern blot analysis under a variety of conditions. Studies were performed to determine rat tissue-specific expression and expression during rat lung development. The \textit{in vivo} effects of steroid hormones on lung PGIS expression were examined in animals treated with corticosteroids, testosterone, and estrogen. The effects of antioxidant and lipopolysaccharide (LPS) administration on lung PGIS expression were evaluated. The isolated-perfused rat lung (a model of shear-stress) was used to elucidate the outcome of differing flow rates on lung PGIS expression.

The results of these studies indicate that the PGIS sequence across species is highly conserved. The rat gene is most strongly expressed in heart and lung, and recognizes a major messenger RNA species of 2.0 kilobase (kb) with two minor bands of 2.9 and 5.6 kb. Skeletal muscle shows a unique band of 4.4 kb. In lung development, PGIS synthase is upregulated late in gestation at day 21. PGIS gene expression is induced by corticosteroids, antioxidants, LPS, and shear stress. Testosterone increases gene expression, while estrogen has the opposite effect. These studies demonstrate the following: (1) rat PGIS synthase is closely homologous to the bovine and human genes; (2) multiple forms of transcripts exist and may represent alternative splicing or distinct isoforms; (3) the gene is expressed in rat lung late in gestation; (4) PGIS expression is induced by shear stress; (5) unlike cyclooxygenase, PGIS is induced by corticosteroids and antioxidants; and (6) testosterone increases gene expression while estrogen decreases expression. Using the rat model will enable examination of gene expression under a variety of conditions and offers the potential for gene therapy trials.

*From the Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore.

Supported by a Basil O'Conner Research Award from the March of Dimes, and National Institutes of Health grant HL-54703.

Reprint requests: Lawrence M. Nogee, MD, Division of Neonatology, CMSC 2110, The Johns Hopkins Hospital, 600 N Wolfe St, Baltimore MD 21287-3200; email: lnogee@welchlink.welch.jhu.edu

*From the Division of Pulmonary Sciences, University of Colorado Health Sciences Center, Denver.