characterized UIP from surgical or explanted lung specimens, features specific for UIP such as a patchwork pattern of interstitial fibrosis, fibroblastic foci, and honeycomb change2,3 are readily recognizable in many TBB specimens.5 We agree that in these small specimens one may not identify discordant pathology. However, since the prognosis associated with “discordant” or “concordant” UIP is the same, recognizing the UIP findings will dictate the ultimate prognosis.4 We believe that these finding are quite important and should be considered as a step forward, not backward as suggested by Mulderhjee and Spiteri. Unfortunately, it has become widely accepted, despite a lack of convincing evidence, that TBBs are not useful in diagnosing idiopathic interstitial pneumonias. However, if in the future TBBs are proven to be useful in diagnosing UIP from a pool of patients with diverse diffuse lung diseases, many unnecessary surgical lung biopsy procedures, with the associated morbidity, mortality, and cost, could be prevented.5 Our study plants the seeds for what could turn out to be a very important step forward in the field.

David A. Zisman, MD, FCCP
David Geffen School of Medicine at UCLA
Los Angeles, CA

Anna-Luise A. Katzenstein, MD, FCCP
SUNY Upstate Medical University
Syracuse, NY

The authors have reported to the ACCP that no significant conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article. Reproduction of this article is prohibited without written permission from the American College of Chest Physicians (www.chestjournal.org/misc/reprints.shtml).

Correspondence to: David A. Zisman, MD, FCCP, David Geffen School of Medicine at UCLA, Pulmonary & Critical Care Medicine, 10833 Le Conte Ave, 37-131 CHS, Los Angeles, CA 90095; e-mail dzisman@mednet.ucla.edu

DOI: 10.1378/chest.130.5.1628a

REFERENCES

Harm From Spirometry?

To the Editor:

The recent editorial by Enright (April 2006),1 and his rhetorical title, prompts this reply. Dr. Enright cites a carefully done Italian study2 that fails to prove that spirometry done by primary care physicians improves the diagnosis of asthma or COPD. In fact, this study2 was inconclusive but did serve to demonstrate some of the barriers to the widespread use of office spirometry, which I have commented about elsewhere,3 along with the benefits. Dr. Enright fears that spirometry will cause big pharmaceutical companies to promote inhalers more vigorously than without spirometry. Is there evidence to support this contention?

About 30 years ago, I wrote an editorial in CHEST3 advising the early diagnosis of COPD. This was after the successful follow-up of a prevalence study4 for COPD that showed a high mortality over 7 years in patients with airflow obstruction.

In the 3 decades that have followed, the monumental Lung Health Study5–7 has shown that the adverse course and prognosis of early stage COPD can be greatly improved through smoking cessation up to 14.5 years of follow-up. Thus, it is clear that knowledge of an abnormality in spirometry results, followed by smoking cessation, does identify a population at high risk in whom intervention can be successful. Survival was convincingly improved in quitters!

But does performing spirometry improve smoking quit rates other than in a National, Heart, Lung, and Blood Institute trial? Two old studies5,8 strongly suggest that community screening does just this. More smokers with the knowledge of airflow obstruction quit than if they had abnormal airflow, but both groups moved away from smoking!

Other studies8–10 have also shown that spirometry can help quit rates when COPD is first diagnosed as a result of spirometry. In these studies,9,10 the spirometry was done in special laboratories and not by primary care physicians. Office spirometry has been shown to increase the diagnosis of COPD in general practice.11 However, another recent study12 showed little benefit from an instruction period and the providing of free spirometers and supplies, plus advice on reimbursement in primary care physicians’ offices. Thus, controversy continues.

My conclusion remains that spirometry is effective in smoking cessation, but we need to find better ways to promote this simple test in doctors’ offices. This is the goal of the National Lung Health Education Program, which was launched a decade ago.13,14 Failure to achieve our goals thus far should only increase our efforts to succeed. We have the need, the simple tools, and the goal of reducing the impact of COPD. We just need to do it!

Thomas L. Petty, MD, Master FCCP
Denver, CO

The author has no conflicts of interest to disclose. Reproduction of this article is prohibited without written permission from the American College of Chest Physicians (www.chestjournal.org/misc/reprints.shtml).

Correspondence to: Thomas L. Petty, MD, Master FCCP, Snowdrift Pulmonary Conference, 890 Logan St, Suite 103, Denver, CO 80203-3154; e-mail: tlpdoc@aol.com

DOI: 10.1378/chest.130.5.1629

REFERENCES

1 Enright P. Does screening for COPD by primary care physicians have the potential to cause more harm than good? Chest 2006; 129:833–835

4 Petty TL. Test your lungs! Chest 1976; 70:450–451

6 Anthonisen NR, Connelt JE, Kiley JP, et al. Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV\textsubscript{1}: the Lung Health Study. JAMA 1994; 272:1497–1505

7 Anthonisen NR, Skeans MA, Wise RA, et al. The effects of a smoking cessation intervention on 14.5-year mortality: a