0
Original Research: Tobacco Cessation and Prevention |

Kinetics of Exhaled Carbon Monoxide After Water-pipe Smoking Indoors and Outdoors

Agnes Juhasz, MD; Dalma Pap, MD; Imre Barta, PhD; Orsolya Drozdovszky, MSc; Andrea Egresi, PhD; Balazs Antus, MD, DSc
Author and Funding Information

Drs Juhasz and Pap contributed equally to this manuscript.

FUNDING/SUPPORT: The study was funded by the Hungarian Respiratory Society and the Hungarian National Scientific Foundation [Grant OTKA K83338].

aDepartment of Pathophysiology, National Koranyi Institute of TB and Pulmonology, Budapest, Hungary

bDepartment of Pulmonology, National Koranyi Institute of TB and Pulmonology, Budapest, Hungary

cWessling Hungary Kft, Budapest, Hungary

CORRESPONDENCE TO: Balazs Antus, MD, DSc, National Koranyi Institute of TB and Pulmonology, Department of Pathophysiology, Piheno ut 1, H-1121 Budapest, Hungary


Copyright 2017, American College of Chest Physicians. All Rights Reserved.


Chest. 2017;151(5):1051-1057. doi:10.1016/j.chest.2017.02.006
Text Size: A A A
Published online

Background  Despite accumulating evidence about its adverse health effects, water-pipe tobacco smoking has become very popular among youth. The aim of this study was to compare smoke exposure and the kinetics of exhaled carbon monoxide (eCO) between water-pipe and cigarette smokers under different conditions.

Methods  Using a cross-over study design, changes in eCO and urinary cotinine levels were measured in a cohort of 32 healthy university students after sessions of water-pipe smoking indoors and outdoors. An indoor cigarette smoking session with equal amounts of tobacco was conducted for reference purposes. Both active and passive smokers participated in all sessions.

Results  In indoor sessions, we found that among active participants, eCO levels were approximately 7.5-fold higher in water-pipe users than cigarette smokers. eCO levels remained significantly elevated even 10 h after discontinuing water-pipe smoking. Notably, eCO levels in passive water-pipe smokers were in the same range as in active cigarette smokers. Compared with indoor sessions, eCO levels in active water-pipe users were reduced in outdoor environments. Nonetheless, levels were still higher in these subjects than those in active cigarette smokers measured in indoor sessions. Urinary cotinine levels were comparable in active water-pipe and cigarette smokers.

Conclusions  Our results suggest that water-pipe smoking is associated with significantly higher toxicant exposure than cigarette smoking even in outdoor environments. Furthermore, even passive, indoor water-pipe smoke exposure may have significant health hazards compared with those of active cigarette smoking.

Figures in this Article

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
PubMed Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543