0
Translating Basic Research Into Clinical Practice |

Immunotherapy for Lung Malignancies: From Gene Sequencing to Novel Therapies OPEN ACCESS

Jonathan Chee, PhD; Bruce W.S. Robinson, MD; Robert A. Holt, PhD; Jenette Creaney, PhD
Author and Funding Information

aNational Centre of Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia; Perth, Western Australia, Australia

bSir Charles Gairdner Hospital, Nedlands, Western Australia, Australia

cBC Cancer Agency, Vancouver, British Columbia, Canada

dDepartment of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada

eDepartment of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada

CORRESPONDENCE TO: Bruce W. S. Robinson, MD, School of Medicine and Pharmacology QEII Medical Centre Unit, The University of Western Australia (M503), 35 Stirling Hwy, Crawley, WA, 6009 Australia


Copyright 2016, University of Western Australia. All Rights Reserved.


Chest. 2017;151(4):891-897. doi:10.1016/j.chest.2016.10.007
Text Size: A A A
Published online

Harnessing the immune system to fight cancer is an exciting advancement in lung cancer therapy. Antitumor immunity can be augmented by checkpoint blockade therapy, which removes the inhibition/brakes imposed on the immune system by the tumor. Checkpoint blockade therapy with anti-programmed cell death protein 1 (anti-PD-1)/anti-programmed death ligand 1 (anti-PDL-1) antibodies causes tumor regression in about 25% of patients with lung cancer. In another approach, the immune system is forced or accelerated to attack the tumor through augmentation of the antitumor response against mutations carried by each lung tumor. This latter approach has become feasible since the advent of next-generation sequencing technology, which allows identification of the specific mutations that each individual lung tumor bears. Indeed lung cancers are now known to have high mutation rates, making them logical targets for mutation-directed immune therapies. We review how sequencing of lung cancer mutations leads to better understanding of how the immune system recognizes tumors, providing improved opportunities to track antitumor immunity and ultimately leading to the development of personalized vaccine strategies aimed at unleashing the host immune system to attack mutations in the tumor.

Figures in this Article

Cancer immunotherapy is one of the most exciting recent advances for the treatment of lung malignancies such as lung cancer and mesothelioma. Checkpoint blockade immunotherapies are so named because they remove the blockade imposed by molecules such as programmed cell death protein 1 (PD-1) or programmed death ligand 1 (PDL-1) on checkpoints required for T-cell activity. Anti-PD-1 and anti-PDL-1 antibodies have proved effective, but they produce responses in only about 25% of patients or less,,,,,, so additional treatment approaches are needed. Approaches to increase immunotherapy response rates include optimizing existing checkpoint blockade therapies or discovering new checkpoint molecules. These approaches are based on the assumption that in patients with lung cancer, there are many restraining suppressive factors or “brakes” on the anticancer immune response. However releasing the brakes is useless if there are no active mechanisms of cancer attack or the “accelerator” cannot be applied. It is becoming clear that one of the most powerful immune accelerators is likely to involve the induction or boosting of immune responses to mutated cancer-related proteins.,,, Until recently, lung cancer was considered to be a nonimmunogenic tumor, but there are now several lines of evidence that suggest otherwise; they also indicate that lung cancer may be amenable to immunotherapeutic approaches. Therefore, another attractive therapeutic approach is to identify cancer mutations and to create vaccines that “force” the patient's immune system to attack those mutations.

We will briefly discuss how the immune system recognizes lung cancer and then how the study of mutations in the cancer might lead to new immune therapies aimed at accelerating the host immune system to mount a strong attack against the tumor. We will also discuss how that will help us understand treatment responses and modify lung cancer therapies in ways that optimize anticancer immunity.

Cancers of the lung account for approximately 19% of worldwide cancer-related deaths. Lung cancers, like most cancers, arise from the accumulation of mutations in the DNA that eventually disrupt the ability of a cell to manage interactions with its environment and control its proliferative state. Most lung cancer mutations are sporadic and somatically acquired as errors in DNA replication or DNA damage caused by carcinogens, particularly tobacco smoke. With an average of seven to 10 somatic mutations per megabase of DNA, the mutation rate in lung cancers is one of the highest seen in human cancer. There is a > 1,000-fold range in mutation load reported in individual lung cancers, and this mutational load correlates strongly with smoking history.

Some DNA mutations can result in the production of mutated proteins or protein fragments, and the immune system can detect some of these.,,,,,,,, The mutated cancer proteins are commonly referred to as neoantigens: “neo” or new, because they are not normally expressed in the body and “antigens” because they appear to be foreign proteins that the immune system can recognize and may respond to.

Several lines of evidence support the notion that the T-cell arm of the immune system plays a pivotal role in immunosurveillance. Clearly demonstrated experimentally in animal models, although not yet proved in humans, T cells eliminate mutated cells at the earliest stages. Furthermore, it has been consistently observed in multiple human tumor types that the presence of tumor infiltrating lymphocytes, and in particular killer cells or cytotoxic T lymphocytes (CTLs), is associated with better patient survival.

Simplistically, the tumor cell processes the mutant proteins such that small peptide fragments containing the mutation loads on to the cell's transplantation or major histocompatibility complex (MHC) molecules. The peptide/MHC assembly transfers to the cell surface, where specific T cells, the main component of cellular immunity, may detect and engage with them.

Successful tumor immunosurveillance requires a series of events to occur: Neoantigens released from the tumor are transported to the regional lymph nodes (mainly by migratory dendritic cells that uptake tumor neoantigen), alerting the immune system to the tumor's presence. Circulating CD8 T cells “see” those neoantigens in the lymph nodes and are activated and programmed to become CTLs. CTLs leave the lymph nodes and enter the tumor through the circulation. CTLs then overcome the immunosuppressive tumor microenvironment, engage the tumor cells, and exert killer functions such as secretion of apoptosis-inducing molecules and cytokines. The induction of tumor cell apoptosis releases more neoantigens that are ferried to the lymph nodes, creating a loop to promote an antitumor CTL response and tumor eradication.

Clearly, however, T cells eventually fail to eradicate the tumor in all patients with cancer. It is essential to understand the steps involved in generating a successful T-cell response if we are to understand (1) where the process is blocked in patients with lung cancer and (2) how we can develop new therapies to overcome these blocks. Failure of tumor eradication can occur because of various tumor-, microenvironment-, and immune-related factors. There needs to be sufficient expression of neoantigens, and these neoantigens need to be presented in such a manner that the immune system recognizes them and also elicits a cytotoxic response at the tumor site. This response then needs to overcome a tumor microenvironment that is possibly immune suppressive in which immunosuppressive molecules such as the T-cell checkpoint blocker PDL-1 are expressed and suppressive T-regulatory cells are present.

Effective therapy will require bypassing these suppressive factors. Encouragingly, they are not impossible to bypass, as checkpoint blockade therapy is effective in 25% of patients with lung cancer. Furthermore, patients with lung cancer, especially those with a smoking history, have a relatively high mutation burden and are likely to express a large number of neoantigens and hence be good targets.

Several lines of experimental evidence have suggested useful ways of improving the antitumor immune response, for example, countering immune-suppressive environments through checkpoint blockade, depletion of T-regulatory cells, or generating immune-activating environments through the provision of T-cell help or the use of agents that mimic T-cell help, such as anti-CD40 or long peptide vaccines.

Of the different techniques/assays available to detect and track neoantigen-specific T-cell responses, the enzyme-linked ImmunoSpot assay (ELISPOT) remains the mainstay because it is a sensitive assay that requires a relatively low number of cells (< 1 million), can be performed on fresh or frozen T cells, and is a powerful tool to screen for multiple neoantigens regardless of MHC type. ELISPOT detects neoantigen-specific T-cell responses as blue dots in a well of a microtiter plate,,,,, and quantifies T cells that produce cytokine such as interferon-γ in response to neoantigens (Fig 1).

Figure 1
Figure Jump LinkFigure 1 Tracking neoantigen-specific immune responses by enzyme-linked ImmunoSpot (ELISPOT). Representative picture of ELISPOT wells with spots that represent cells that produce interferon-γ in response to neoantigen peptide stimulation but not to the wild-type peptide sequence. Cells from tumor draining lymph nodes of five mice inoculated with the AB1-HA mesothelioma cell line were tested against predicted neoantigen-peptide-mutated Uqcrc2 (abbreviated to Uq2) and compared against wild-type Uqcrc2 peptide (left). Spots in each well are cells that respond to peptide stimulation. A dot plot quantifying the proportions of spot forming units in each well is shown on the right. MUT = mutant; WT = wild type.Grahic Jump Location

Another common reagent used to study neoantigen-specific T cells is peptide MHC multimers. Individual neoantigen peptide bound to MHCs (peptide MHC [pMHC]) can be synthesized as monomers, but each pMHC monomer binds to a specific T-cell receptor at low affinity. pMHC complexes can be cross-linked to form multimers to increase the strength of binding to T-cell receptors and are used as reagents to detect antigen-specific T cells by flow cytometry. Most commonly, neoantigen-specific T cells detected by multimers are costained with antibodies against checkpoint molecules, such as PD-1, T-cell immunoglobulin and mucin-domain containing-3, and cytotoxic T-lymphocyte-associated protein 4, and are then sorted, isolated, and expanded in vitro for further analysis. Multimers have successfully been used as a screening tool for neoantigen-specific T-cell detection.,,,

Immunotherapy responses are better in patients with lung cancer with a high mutation burden, and using the techniques described earlier, boosted T-cell numbers seen after checkpoint blockade are mostly directed against mutated neoantigens,, providing strong circumstantial evidence that neoantigens are indeed the targets of effective antitumor immune responses.

Identification of neoantigens in patients with lung cancer will provide clinicians with the possibility of new therapies. First, therapeutic trials in patients with lung cancer are being commenced now using individualized tumor-specific vaccines (NCT02632019, NCT01970358, NCT02287428) with the goal of reinforcing the immune system's attack on the tumor. Second, it provides the opportunity of tracking immune responses to neoantigens as a means of making therapeutic decisions about therapies such as anti-PD-1/anti-PDL-1 and chemotherapy.

Antitumor immune responses are generally weak, so interest in a neoantigen vaccine approach is increasing. This approach involves using a neoantigenic peptide vaccine with suitable adjuvants. Neoantigen vaccine can be synthetic peptides, DNA or RNA constructs, or it can be engineered with Listeria, or other viral vectors. Neoantigens identified using next-generation sequencing reduced tumor growth when used as a therapeutic vaccine in three recently published mouse models (response of 60%-85% in a total of 40 mice,,). Only one human neoantigen vaccine study has been published thus far. In patients with melanoma, neoantigen vaccine induced immune anticancer activity.

It is likely that neoantigen vaccination will be synergistic with other forms of therapy, especially therapies that block inhibitory immune checkpoints. In any patient responding to checkpoint blockade, an antitumor immune response must already exist, and boosting those responders by vaccination might prove useful. Vaccination could be synergistic with certain chemotherapeutic agents. Chemotherapy can kill tumor cells in ways that can be immunogenic—for example, by delivering large loads of tumor antigen to the lymph nodes and subsequently activating T cells., Gemcitabine, which is often used in lung cancer, is a good example of a chemotherapeutic drug that is immunogenic.,

Furthermore, we recently made the surprising observation that the size of the postchemotherapy “rebound” burst of lymphocyte proliferation in patients with lung cancer and mesothelioma correlated with overall survival. These proliferating T cells may be responding to neoantigens that have been “unmasked” by chemotherapy. This is currently being tested, and if it proves to be so, vaccinating with neoantigens could be another treatment option that is synergistic with chemotherapy.

Because effective immunotherapy restores the antitumor response, it is crucial to understand at which point the neoantigen CTL response is blocked—for example, if strong neoantigen-specific T-cell responses are present in a nonresponder to immunotherapy, a block is likely to be present at the tumor level, and treatments that augment immunosuppression at the tumor would be appropriate. If, however, neoantigen responses are not detectable at all, a failure at the T-cell level is likely, and a vaccination or adoptive T-cell transfer approach might be needed to boost the T-cell response. Hence, tracking neoantigen-specific CD8 T-cell responses enables dissection of the reasons for the success/failure of immunotherapy.

Being able to track neoantigen-specific responses will also help clinicians make treatment decisions regarding the immunogenicity of the chemotherapy they are using for their patients with lung cancer. Responses may be optimal only in those individuals who have a strong antitumor immune response. Thus alterations in the type, combinations, dose, or schedule of therapy could be made to optimize immunogenicity.

Although it has yet to reach the clinic, this is what current research predicts neoantigen therapy in the clinic might look like (Fig 2).

Figure 2
Figure Jump LinkFigure 2 Neoantigen immunotherapy in patients. Tumor samples from patients are sequenced for mutations and have their neoantigens predicted. Neoantigen peptides are synthesized for vaccination. Enzyme-linked ImmunoSpot (ELISPOT) and multimers are used to validate neoantigen T-cell responses in patients' blood. Once validated, T-cell responses in blood can be monitored longitudinally after different immunotherapies, vaccination, or chemotherapy and correlated with clinical outcomes.Grahic Jump Location
At Diagnosis

Patients would have their MHC variants determined by standard HLA typing (because T-cell recognition of neoantigens is MHC dependent), and their tumor would be sampled. Approximately 2 to 4 μg of high-quality tumor nucleic acid, that is, about 5 to 10 mm3 of tumor sample, is necessary for sequencing. The exact amount of clinical specimen required by biopsy, endobronchial ultrasonography, or cytologic sampling depends on the percentage of viable tumor cells present. Tumor DNA and RNA sequencing, calling of mutations, prediction and selection of neoantigens, and synthesis of a vaccine will take approximately 1 to 2 months. The combination of DNA and RNA sequencing ensures high confidence in the predicted mutations and in identifying which mutations the tumor potentially expresses.

As the mutation burden, and hence neoantigen profile, of each patient with lung cancer will be different, the therapy administered will be personalized. Subgroups that possibly benefit most from neoantigen vaccination include patients with high mutational burden—for example, those with non-small cell lung cancer and a smoking history or those with PDL-1 expression within the tumor microenvironment. However, this cannot be prejudged at this stage. To date, most neoantigen studies focus on single nucleotide variations that lead to amino acid substitutions. Peptide sequences resulting from these mutations are put through bioinformatics algorithms, and mutated peptides predicted to bind to their particular MHC class I molecules are synthesized.

T-Cell Testing

The patient's blood, lymph node, and tumor lymphocytes can then be tested to determine which of these peptides they respond to. Not every center relies on this step, including our own, because it adds time and is the most uncertain step in the pipeline.

Vaccination

Patients will receive the vaccine as an outpatient. Depending on the local logistical and regulatory conditions, neoantigen vaccines are administered either as peptides or DNA or RNA constructs. In the case of peptide vaccines, five to 10 mutant peptides (each 27-30 amino acids long) are selected based on predicted strongest binding affinity to HLA, using prediction algorithms such as Immune Epitope Database and netMHCpan. In some cases, expression of mutated peptides on tumor cells are validated by mass spectrometry and then selected. The selection of a pool of five to 10 peptides is a practical approach combining reasonable cost with the likelihood of administering at least one to two strong antigens from that pool plus reducing the chances of immunoselection of resistant cells (akin to multiple drug therapy of tuberculosis or HIV infection).

Peptide vaccines will be administered with adjuvants, which can be various pharmacologic or immunologic agents that enhance the immune response to the delivered neoantigen vaccine. Possible adjuvants to include in the vaccine are Hiltonol (poly-ICLC) (Oncovir, Inc.) which signals through the toll-like receptor 3 danger pathway to induce inflammatory peptide-specific T-cell responses, and Montanide (Seppic), an oil-based adjuvant that forms a depot so that peptide is released slowly from the vaccination site. Neoantigen preclinical studies, and vaccination trials with long peptides have shown that when used in tandem, these adjuvants cause the immune system to generate a strong neoantigen T-cell response, which would not be achieved by administering peptide alone.

The vaccination schedule would involve repeated vaccination over the first few weeks (to simulate a viral infection) and then boosters on subsequent clinic visits. Multiple vaccinations are required to generate a strong long-lasting T-cell response. Preclinical studies suggest that two to five vaccinations are required for an adequate antitumor response., The exact number of vaccinations required to generate an adequate immune response in a human is still unknown, as it would depend on the immunogenicity of the peptide and the tumor burden. Monitoring the neoantigen T-cell response after each vaccination would provide insight into this issue.

Combination With Other Therapies

It is probable that this therapy will ultimately be used with checkpoint blockade therapies and immunogenic chemotherapies. The role of neoantigen vaccines in radiotherapy or in conjunction with surgery is yet to be determined.

Testing Host Response to Neoantigens

Before, during, and after therapy, T-cell responses to the patient's particular neoantigens will be assayed to enable evaluation of any correlation between the nature, strength, and range of responses with clinical outcomes.

In conclusion, analysis of lung cancer mutations combined with immunological assays to evaluate the host response to mutated proteins might lead to new vaccination therapies aimed at forcing the host immune system to attack the tumor and also help us improve therapeutic decision-making in patients with lung cancer.

Author contributions: B. W. S. R. is the guarantor of this manuscript. J. C., B. W. S. R., R. A. H., and J. C. contributed to and edited this review.

Financial/nonfinancial disclosures: None declared.

Couzin-Frankel J. . Breakthrough of the year 2013. Cancer immunotherapy. Science. 2013;342:1432-1433 [PubMed]journal. [CrossRef] [PubMed]
 
Lynch T.J. .Bondarenko I. .Luft A. .et al Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol. 2012;30:2046-2054 [PubMed]journal. [CrossRef] [PubMed]
 
Topalian S.L. .Hodi F.S. .Brahmer J.R. .et al Safety, activity, and immune correlates of anti-antibody in cancer. N Engl J Med. 2012;366:2443-2454 [PubMed]journal. [CrossRef] [PubMed]
 
Topalian S.L. .Sznol M. .McDermott D.F. .et al Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32:1020-1030 [PubMed]journal. [CrossRef] [PubMed]
 
Hamid O. .Robert C. .Daud A. .et al Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369:134-144 [PubMed]journal. [CrossRef] [PubMed]
 
Hodi F.S. .O'Day S.J. .McDermott D.F. .et al Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711-723 [PubMed]journal. [CrossRef] [PubMed]
 
Postow M.A. .Callahan M.K. .Wolchok J.D. . Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33:1974-1982 [PubMed]journal. [CrossRef] [PubMed]
 
Rizvi N.A. .Hellmann M.D. .Snyder A. .et al Cancer immunology. Mutational landscape determines sensitivity to blockade in non-small cell lung cancer. Science. 2015;348:124-128 [PubMed]journal. [CrossRef] [PubMed]
 
Brown S.D. .Warren R.L. .Gibb E.A. .et al Neoantigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res. 2014;24:743-750 [PubMed]journal. [CrossRef] [PubMed]
 
Van Allen E.M. .Miao D. .Schilling B. .et al Genomic correlates of response to CTLA4 blockade in metastatic melanoma. Science. 2015;350:207-211 [PubMed]journal. [CrossRef] [PubMed]
 
Vansteenkiste J.F. .Cho B.C. .Vanakesa T. .et al Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2016;17:822-835 [PubMed]journal. [CrossRef] [PubMed]
 
Torre L.A. .Bray F. .Siegel R.L. .Ferlay J. .Lortet-Tieulent J. .Jemal A. . Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87-108 [PubMed]journal. [CrossRef] [PubMed]
 
Hanahan D. .Weinberg R.A. . Hallmarks of cancer: the next generation. Cell. 2011;144:646-674 [PubMed]journal. [CrossRef] [PubMed]
 
Alexandrov L.B. .Nik-Zainal S. .Wedge D.C. .et al Signatures of mutational processes in human cancer. Nature. 2013;500:415-421 [PubMed]journal. [CrossRef] [PubMed]
 
Govindan R. .Ding L. .Griffith M. .et al Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell. 2012;150:1121-1134 [PubMed]journal. [CrossRef] [PubMed]
 
Cohen C.J. .Gartner J.J. .Horovitz-Fried M. .et al Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. J Clin Invest. 2015;125:3981-3991 [PubMed]journal. [CrossRef] [PubMed]
 
Lu Y.C. .Yao X. .Crystal J.S. .et al Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clin Cancer Res. 2014;20:3401-3410 [PubMed]journal. [CrossRef] [PubMed]
 
Pasetto A. .Alena G. .Robbins P.F. .et al Tumor- and neoantigen-reactive T-cell receptors can be identified based on their frequency in fresh tumor. Cancer Immunol Res. 2016;4:734-743 [PubMed]journal. [CrossRef] [PubMed]
 
Robbins P.F. .Lu Y.C. .El-Gamil M. .et al Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med. 2013;19:747-752 [PubMed]journal. [CrossRef] [PubMed]
 
Kvistborg P. .Philips D. .Kelderman S. .et al Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T-cell response. Sci Transl Med. 2014;6:254ra128- [PubMed]journal. [CrossRef] [PubMed]
 
Linnemann C. .van Buuren M.M. .Bies L. .et al High-throughput epitope discovery reveals frequent recognition of neoantigens by CD4+ T-cells in human melanoma. Nat Med. 2015;21:81-85 [PubMed]journal. [PubMed]
 
van Rooij N. .van Buuren M.M. .Philips D. .et al Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol. 2013;31:e439-e442 [PubMed]journal. [CrossRef] [PubMed]
 
McGranahan N. .Furness A.J. .Rosenthal R. .et al Clonal neoantigens elicit T-cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463-1469 [PubMed]journal. [CrossRef] [PubMed]
 
Dunn G.P. .Bruce A.T. .Ikeda H. .Old L.J. .Schreiber R.D. . Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991-998 [PubMed]journal. [CrossRef] [PubMed]
 
Gooden M.J. .de Bock G.H. .Leffers N. .Daemen T. .Nijman H.W. . The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer. 2011;105:93-103 [PubMed]journal. [CrossRef] [PubMed]
 
Zinkernagel R.M. .Doherty P.C. . Restriction of in vitro T-cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature. 1974;248:701-702 [PubMed]journal. [CrossRef] [PubMed]
 
Lake R.A. .Robinson B.W. . Immunotherapy and chemotherapy—a practical partnership. Nat Rev Cancer. 2005;5:397-405 [PubMed]journal. [CrossRef] [PubMed]
 
Kurts C. .Robinson B.W. .Knolle P.A. . Cross-priming in health and disease. Nat Rev Immunol. 2010;10:403-414 [PubMed]journal. [CrossRef] [PubMed]
 
Marzo A.L. .Kinnear B.F. .Lake R.A. .et al Tumor-specific CD4+ T-cells have a major “post-licensing” role in CTL mediated anti-tumor immunity. J Immunol. 2000;165:6047-6055 [PubMed]journal. [CrossRef] [PubMed]
 
Nowak A.K. .Cook A.M. .McDonnell A.M. .et al A phase 1b clinical trial of the CD40-activating antibody CP-870,893 in combination with cisplatin and pemetrexed in malignant pleural mesothelioma. Ann Oncol. 2015;26:2483-2490 [PubMed]journal. [PubMed]
 
Kreiter S. .Vormehr M. .van de Roemer N. .et al Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520:692-696 [PubMed]journal. [CrossRef] [PubMed]
 
Castle J.C. .Kreiter S. .Diekmann J. .et al Exploiting the mutanome for tumor vaccination. Cancer Res. 2012;72:1081-1091 [PubMed]journal. [CrossRef] [PubMed]
 
Gubin M.M. .Zhang X. .Schuster H. .et al Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515:577-581 [PubMed]journal. [CrossRef] [PubMed]
 
Wick D.A. .Webb J.R. .Nielsen J.S. .et al Surveillance of the tumor mutanome by T-cells during progression from primary to recurrent ovarian cancer. Clin Cancer Res. 2014;20:1125-1134 [PubMed]journal. [CrossRef] [PubMed]
 
Martin S.D. .Brown S.D. .Wick D.A. .et al Low mutation burden in ovarian cancer may limit the utility of neoantigen-targeted vaccines. PloS One. 2016;11:e0155189- [PubMed]journal. [CrossRef] [PubMed]
 
Creaney J. .Ma S. .Sneddon S.A. .et al Strong spontaneous tumor neoantigen responses induced by a natural human carcinogen. Oncoimmunology. 2015;4:e1011492- [PubMed]journal. [CrossRef] [PubMed]
 
Altman J.D. .Moss P.A. .Goulder P.J. .et al Phenotypic analysis of antigen-specific T lymphocytes. Science. 1996;274:94-96 [PubMed]journal. [CrossRef] [PubMed]
 
Yadav M. .Jhunjhunwala S. .Phung Q.T. .et al Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature. 2014;515:572-576 [PubMed]journal. [CrossRef] [PubMed]
 
Katsnelson A. . Mutations as munitions: neoantigen vaccines get a closer look as cancer treatment. Nat Med. 2016;22:122-124 [PubMed]journal. [CrossRef] [PubMed]
 
Kranz L.M. .Diken M. .Haas H. .et al Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534:396-401 [PubMed]journal. [CrossRef] [PubMed]
 
Carreno B.M. .Magrini V. .Becker-Hapak M. .et al Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science. 2015;348:803-808 [PubMed]journal. [CrossRef] [PubMed]
 
Nowak A.K. .Lake R.A. .Marzo A.L. .et al Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T-cells. J Immunol. 2003;170:4905-4913 [PubMed]journal. [CrossRef] [PubMed]
 
McDonnell A.M. .Joost Lesterhuis W. .Khong A. .et al Restoration of defective cross-presentation in tumors by gemcitabine. Oncoimmunology. 2015;4:e1005501- [PubMed]journal. [CrossRef] [PubMed]
 
Lesterhuis W.J. .Salmons J. .Nowak A.K. .et al Synergistic effect of CTLA-4 blockade and cancer chemotherapy in the induction of anti-tumor immunity. PloS One. 2013;8:e61895- [PubMed]journal. [CrossRef] [PubMed]
 
McCoy M.J. .Nowak A.K. .van der Most R.G. .Dick I.M. .Lake R.A. . Peripheral CD8(+) T-cell proliferation is prognostic for patients with advanced thoracic malignancies. Cancer Immunol Immunother. 2013;62:529-539 [PubMed]journal. [CrossRef] [PubMed]
 
Melief C.J. .van Hall T. .Arens R. .Ossendorp F. .van der Burg S.H. . Therapeutic cancer vaccines. J Clin Invest. 2015;125:3401-3412 [PubMed]journal. [CrossRef] [PubMed]
 

Figures

Figure Jump LinkFigure 1 Tracking neoantigen-specific immune responses by enzyme-linked ImmunoSpot (ELISPOT). Representative picture of ELISPOT wells with spots that represent cells that produce interferon-γ in response to neoantigen peptide stimulation but not to the wild-type peptide sequence. Cells from tumor draining lymph nodes of five mice inoculated with the AB1-HA mesothelioma cell line were tested against predicted neoantigen-peptide-mutated Uqcrc2 (abbreviated to Uq2) and compared against wild-type Uqcrc2 peptide (left). Spots in each well are cells that respond to peptide stimulation. A dot plot quantifying the proportions of spot forming units in each well is shown on the right. MUT = mutant; WT = wild type.Grahic Jump Location
Figure Jump LinkFigure 2 Neoantigen immunotherapy in patients. Tumor samples from patients are sequenced for mutations and have their neoantigens predicted. Neoantigen peptides are synthesized for vaccination. Enzyme-linked ImmunoSpot (ELISPOT) and multimers are used to validate neoantigen T-cell responses in patients' blood. Once validated, T-cell responses in blood can be monitored longitudinally after different immunotherapies, vaccination, or chemotherapy and correlated with clinical outcomes.Grahic Jump Location

Tables

References

Couzin-Frankel J. . Breakthrough of the year 2013. Cancer immunotherapy. Science. 2013;342:1432-1433 [PubMed]journal. [CrossRef] [PubMed]
 
Lynch T.J. .Bondarenko I. .Luft A. .et al Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol. 2012;30:2046-2054 [PubMed]journal. [CrossRef] [PubMed]
 
Topalian S.L. .Hodi F.S. .Brahmer J.R. .et al Safety, activity, and immune correlates of anti-antibody in cancer. N Engl J Med. 2012;366:2443-2454 [PubMed]journal. [CrossRef] [PubMed]
 
Topalian S.L. .Sznol M. .McDermott D.F. .et al Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32:1020-1030 [PubMed]journal. [CrossRef] [PubMed]
 
Hamid O. .Robert C. .Daud A. .et al Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369:134-144 [PubMed]journal. [CrossRef] [PubMed]
 
Hodi F.S. .O'Day S.J. .McDermott D.F. .et al Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711-723 [PubMed]journal. [CrossRef] [PubMed]
 
Postow M.A. .Callahan M.K. .Wolchok J.D. . Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33:1974-1982 [PubMed]journal. [CrossRef] [PubMed]
 
Rizvi N.A. .Hellmann M.D. .Snyder A. .et al Cancer immunology. Mutational landscape determines sensitivity to blockade in non-small cell lung cancer. Science. 2015;348:124-128 [PubMed]journal. [CrossRef] [PubMed]
 
Brown S.D. .Warren R.L. .Gibb E.A. .et al Neoantigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res. 2014;24:743-750 [PubMed]journal. [CrossRef] [PubMed]
 
Van Allen E.M. .Miao D. .Schilling B. .et al Genomic correlates of response to CTLA4 blockade in metastatic melanoma. Science. 2015;350:207-211 [PubMed]journal. [CrossRef] [PubMed]
 
Vansteenkiste J.F. .Cho B.C. .Vanakesa T. .et al Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2016;17:822-835 [PubMed]journal. [CrossRef] [PubMed]
 
Torre L.A. .Bray F. .Siegel R.L. .Ferlay J. .Lortet-Tieulent J. .Jemal A. . Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87-108 [PubMed]journal. [CrossRef] [PubMed]
 
Hanahan D. .Weinberg R.A. . Hallmarks of cancer: the next generation. Cell. 2011;144:646-674 [PubMed]journal. [CrossRef] [PubMed]
 
Alexandrov L.B. .Nik-Zainal S. .Wedge D.C. .et al Signatures of mutational processes in human cancer. Nature. 2013;500:415-421 [PubMed]journal. [CrossRef] [PubMed]
 
Govindan R. .Ding L. .Griffith M. .et al Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell. 2012;150:1121-1134 [PubMed]journal. [CrossRef] [PubMed]
 
Cohen C.J. .Gartner J.J. .Horovitz-Fried M. .et al Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. J Clin Invest. 2015;125:3981-3991 [PubMed]journal. [CrossRef] [PubMed]
 
Lu Y.C. .Yao X. .Crystal J.S. .et al Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clin Cancer Res. 2014;20:3401-3410 [PubMed]journal. [CrossRef] [PubMed]
 
Pasetto A. .Alena G. .Robbins P.F. .et al Tumor- and neoantigen-reactive T-cell receptors can be identified based on their frequency in fresh tumor. Cancer Immunol Res. 2016;4:734-743 [PubMed]journal. [CrossRef] [PubMed]
 
Robbins P.F. .Lu Y.C. .El-Gamil M. .et al Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med. 2013;19:747-752 [PubMed]journal. [CrossRef] [PubMed]
 
Kvistborg P. .Philips D. .Kelderman S. .et al Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T-cell response. Sci Transl Med. 2014;6:254ra128- [PubMed]journal. [CrossRef] [PubMed]
 
Linnemann C. .van Buuren M.M. .Bies L. .et al High-throughput epitope discovery reveals frequent recognition of neoantigens by CD4+ T-cells in human melanoma. Nat Med. 2015;21:81-85 [PubMed]journal. [PubMed]
 
van Rooij N. .van Buuren M.M. .Philips D. .et al Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol. 2013;31:e439-e442 [PubMed]journal. [CrossRef] [PubMed]
 
McGranahan N. .Furness A.J. .Rosenthal R. .et al Clonal neoantigens elicit T-cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463-1469 [PubMed]journal. [CrossRef] [PubMed]
 
Dunn G.P. .Bruce A.T. .Ikeda H. .Old L.J. .Schreiber R.D. . Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991-998 [PubMed]journal. [CrossRef] [PubMed]
 
Gooden M.J. .de Bock G.H. .Leffers N. .Daemen T. .Nijman H.W. . The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer. 2011;105:93-103 [PubMed]journal. [CrossRef] [PubMed]
 
Zinkernagel R.M. .Doherty P.C. . Restriction of in vitro T-cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature. 1974;248:701-702 [PubMed]journal. [CrossRef] [PubMed]
 
Lake R.A. .Robinson B.W. . Immunotherapy and chemotherapy—a practical partnership. Nat Rev Cancer. 2005;5:397-405 [PubMed]journal. [CrossRef] [PubMed]
 
Kurts C. .Robinson B.W. .Knolle P.A. . Cross-priming in health and disease. Nat Rev Immunol. 2010;10:403-414 [PubMed]journal. [CrossRef] [PubMed]
 
Marzo A.L. .Kinnear B.F. .Lake R.A. .et al Tumor-specific CD4+ T-cells have a major “post-licensing” role in CTL mediated anti-tumor immunity. J Immunol. 2000;165:6047-6055 [PubMed]journal. [CrossRef] [PubMed]
 
Nowak A.K. .Cook A.M. .McDonnell A.M. .et al A phase 1b clinical trial of the CD40-activating antibody CP-870,893 in combination with cisplatin and pemetrexed in malignant pleural mesothelioma. Ann Oncol. 2015;26:2483-2490 [PubMed]journal. [PubMed]
 
Kreiter S. .Vormehr M. .van de Roemer N. .et al Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520:692-696 [PubMed]journal. [CrossRef] [PubMed]
 
Castle J.C. .Kreiter S. .Diekmann J. .et al Exploiting the mutanome for tumor vaccination. Cancer Res. 2012;72:1081-1091 [PubMed]journal. [CrossRef] [PubMed]
 
Gubin M.M. .Zhang X. .Schuster H. .et al Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515:577-581 [PubMed]journal. [CrossRef] [PubMed]
 
Wick D.A. .Webb J.R. .Nielsen J.S. .et al Surveillance of the tumor mutanome by T-cells during progression from primary to recurrent ovarian cancer. Clin Cancer Res. 2014;20:1125-1134 [PubMed]journal. [CrossRef] [PubMed]
 
Martin S.D. .Brown S.D. .Wick D.A. .et al Low mutation burden in ovarian cancer may limit the utility of neoantigen-targeted vaccines. PloS One. 2016;11:e0155189- [PubMed]journal. [CrossRef] [PubMed]
 
Creaney J. .Ma S. .Sneddon S.A. .et al Strong spontaneous tumor neoantigen responses induced by a natural human carcinogen. Oncoimmunology. 2015;4:e1011492- [PubMed]journal. [CrossRef] [PubMed]
 
Altman J.D. .Moss P.A. .Goulder P.J. .et al Phenotypic analysis of antigen-specific T lymphocytes. Science. 1996;274:94-96 [PubMed]journal. [CrossRef] [PubMed]
 
Yadav M. .Jhunjhunwala S. .Phung Q.T. .et al Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature. 2014;515:572-576 [PubMed]journal. [CrossRef] [PubMed]
 
Katsnelson A. . Mutations as munitions: neoantigen vaccines get a closer look as cancer treatment. Nat Med. 2016;22:122-124 [PubMed]journal. [CrossRef] [PubMed]
 
Kranz L.M. .Diken M. .Haas H. .et al Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534:396-401 [PubMed]journal. [CrossRef] [PubMed]
 
Carreno B.M. .Magrini V. .Becker-Hapak M. .et al Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science. 2015;348:803-808 [PubMed]journal. [CrossRef] [PubMed]
 
Nowak A.K. .Lake R.A. .Marzo A.L. .et al Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T-cells. J Immunol. 2003;170:4905-4913 [PubMed]journal. [CrossRef] [PubMed]
 
McDonnell A.M. .Joost Lesterhuis W. .Khong A. .et al Restoration of defective cross-presentation in tumors by gemcitabine. Oncoimmunology. 2015;4:e1005501- [PubMed]journal. [CrossRef] [PubMed]
 
Lesterhuis W.J. .Salmons J. .Nowak A.K. .et al Synergistic effect of CTLA-4 blockade and cancer chemotherapy in the induction of anti-tumor immunity. PloS One. 2013;8:e61895- [PubMed]journal. [CrossRef] [PubMed]
 
McCoy M.J. .Nowak A.K. .van der Most R.G. .Dick I.M. .Lake R.A. . Peripheral CD8(+) T-cell proliferation is prognostic for patients with advanced thoracic malignancies. Cancer Immunol Immunother. 2013;62:529-539 [PubMed]journal. [CrossRef] [PubMed]
 
Melief C.J. .van Hall T. .Arens R. .Ossendorp F. .van der Burg S.H. . Therapeutic cancer vaccines. J Clin Invest. 2015;125:3401-3412 [PubMed]journal. [CrossRef] [PubMed]
 
NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
PubMed Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543