0
Translating Basic Research Into Clinical Practice |

Hypoxic Pulmonary Vasoconstriction: From Molecular Mechanisms to Medicine FREE TO VIEW

Kimberly J. Dunham-Snary, PhD; Danchen Wu, MD, PhD; Edward A. Sykes, PhD; Amar Thakrar, MD; Leah R.G. Parlow; Jeffrey D. Mewburn; Joel L. Parlow, MD; Stephen L. Archer, MD
Author and Funding Information

FUNDING/SUPPORT: This work is supported by the National Institutes of Health [R01-HL071115 and RC1HL099462], Canadian Institutes for Health Research (CIHR) Foundation Award 143261, the Canada Foundation for Innovation (CFI) 33012 and 229252, The W.J. Henderson Foundation and a Canada Research Chair 950-229252. K. D. S. and D. W. are funded by Scholar Awards from the Canadian Vascular Network.

aDepartment of Medicine, Queen's University, Kingston, ON, Canada

bDepartment of Anesthesiology and Perioperative Medicine, Queen's University, Kingston, ON, Canada

CORRESPONDENCE TO: Stephen L. Archer MD, Department of Medicine, Queen's University, Etherington Hall, Rm 3041, 94 Stuart St, Kingston, ON, Canada, K7L 3N6


Copyright 2016, American College of Chest Physicians. All Rights Reserved.


Chest. 2017;151(1):181-192. doi:10.1016/j.chest.2016.09.001
Text Size: A A A
Published online

Hypoxic pulmonary vasoconstriction (HPV) is a homeostatic mechanism that is intrinsic to the pulmonary vasculature. Intrapulmonary arteries constrict in response to alveolar hypoxia, diverting blood to better-oxygenated lung segments, thereby optimizing ventilation/perfusion matching and systemic oxygen delivery. In response to alveolar hypoxia, a mitochondrial sensor dynamically changes reactive oxygen species and redox couples in pulmonary artery smooth muscle cells (PASMC). This inhibits potassium channels, depolarizes PASMC, activates voltage-gated calcium channels, and increases cytosolic calcium, causing vasoconstriction. Sustained hypoxia activates rho kinase, reinforcing vasoconstriction, and hypoxia-inducible factor (HIF)-1α, leading to adverse pulmonary vascular remodeling and pulmonary hypertension (PH). In the nonventilated fetal lung, HPV diverts blood to the systemic vasculature. After birth, HPV commonly occurs as a localized homeostatic response to focal pneumonia or atelectasis, which optimizes systemic Po2 without altering pulmonary artery pressure (PAP). In single-lung anesthesia, HPV reduces blood flow to the nonventilated lung, thereby facilitating thoracic surgery. At altitude, global hypoxia causes diffuse HPV, increases PAP, and initiates PH. Exaggerated or heterogeneous HPV contributes to high-altitude pulmonary edema. Conversely, impaired HPV, whether due to disease (eg, COPD, sepsis) or vasodilator drugs, promotes systemic hypoxemia. Genetic and epigenetic abnormalities of this oxygen-sensing pathway can trigger normoxic activation of HIF-1α and can promote abnormal metabolism and cell proliferation. The resulting pseudohypoxic state underlies the Warburg metabolic shift and contributes to the neoplasia-like phenotype of PH. HPV and oxygen sensing are important in human health and disease.

Figures in this Article
Hypoxic pulmonary vasoconstriction (HPV) was initially identified by Bradford and Dean and subsequently characterized by von Euler and Liljestrand. HPV is the lung’s intrinsic mechanism for matching perfusion to ventilation to optimize systemic oxygen delivery. HPV reflects the constriction of small intrapulmonary arteries in response to alveolar hypoxia. HPV can be global (in response to environmental hypoxia), in which case pulmonary artery pressure (PAP) rises; however, in most cases HPV is elicited by focal atelectasis or pneumonia, and both the alveolar hypoxia and the vasoconstriction are localized to a lung segment or lobe. In such cases, blood is diverted from the hypoxic lung segment to a better-oxygenated portion of the lung without elevation of PAP. Using the combination of a chest roentgenogram and a radioisotope ventilation/perfusion (V./Q. ) scan, the matching V./Q.  defect due to parenchymal lung disease and HPV (Fig 1A) is readily distinguished from the mismatched V./Q.  defect caused by pulmonary embolism (Fig 1B).

Figure Jump LinkFigure 1 Matched vs mismatched ventilation/perfusion (V./Q. ) defects. (A) Matched V./Q.  defect due to interstitial lung disease. An 83-year-old man with shortness of breath on exertion. Chest CT showed interstitial lung disease with a basal predominance consistent with usual interstitial pneumonitis. (B) Mismatched defect indicating pulmonary embolism. A 57-year-old man with obesity, hypertension, and OSA presenting with shortness of breath and desaturation with minimal exertion. PA = posteroanterior; LAT = lateral.Grahic Jump Location
HPV has its onset within seconds of exposure to hypoxia and reaches a maximum intensity within minutes., Although HPV can be sustained, it remains reversible on restoration of normal airway oxygen levels, unless pulmonary hypertension (PH) and adverse vascular remodeling has occurred. The reversibility of sustained lobar HPV is illustrated by a patient whose endobronchial adenoma caused longstanding left lung atelectasis and a matching V./Q.  abnormality, both of which reversed after resection of the adenoma. The vasoconstrictor response to hypoxia is unique to the resistance PAs; the systemic vasculature (eg, renal, mesenteric, and cerebral arteries) dilates in response to hypoxia (which also serves to increase tissue oxygen delivery,,).

The sensor and effector mechanisms of HPV have been the subject of considerable research.,,,, The sensor mechanism of HPV is hypothesized to reside within the mitochondria. The classically recognized function of the mitochondria is the generation of energy (adenosine triphosphate [ATP]). Electron transport from the electron donors, nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2) occurs along the electron transport chain (ETC). Electron flux between ETC components is mediated by lipid-soluble semiquinones within the cristae. As electrons flow down a redox gradient to the terminal electron receptor (molecular oxygen), protons are transported across the inner mitochondrial membrane. According to Mitchell’s chemiosmotic theory, the buildup of hydrogen ions across this membrane generates the electrochemical gradient that powers an H+ transporter, the F1FO adenosine triphosphatase complex, and promotes ATP synthesis.

Mitochondria are prokaryotic endosymbionts that evolved within eukaryotic cells to support the energy demands of multicellular organisms. It is increasingly recognized that they have many noncanonical functions including oxygen sensing. Mitochondria form dynamic networks shaped by fission, fusion, and translocation. Live-cell imaging of the mitochondrial network suggests an analogy to the electrical wiring in a building (Fig 2, Video 1). Unlike the static two-dimensional electron microscopic images in fixed-tissue preparations, which make these organelles appear isolated, the use of mitochondria-targeted fluorophores in living pulmonary artery smooth muscle cells (PASMC) reveals that mitochondria form a pervasive and dynamic reticulum that reaches all areas of the cell and dynamically contacts other organelles, such as the sarcoplasmic reticulum. An appreciation of mitochondrial form aids understanding of the sensor function.

Figure 2
Figure Jump LinkFigure 2 Pulmonary artery (PA) mitochondrial network. (A) Mitochondria in pulmonary artery smooth muscle cells from a normal patient were stained with 20 nM tetramethylrhodamine and imaged using confocal microscopy. Nuclei stained with NucBlue Live Cell Stain. (B) Bovine pulmonary artery (PA) endothelial cells stained for mitochondria (inset: red, MitoTracker Red CMXRos), phalloidin (green, Alexa Fluor 488), and nucleus (blue, 4′,6-diamidino-2-phenylindole) and imaged using confocal microscopy. All dyes/stains from Life Technologies (Carlsbad, CA).Grahic Jump Location

The sensor function of mitochondria is a byproduct of physiological electron flux, as illustrated in Figure 3. Briefly, during electron transfer some uncoupled electrons generate reactive oxygen species (ROS), specifically superoxide, which is rapidly converted by superoxide dismutase 2 (SOD2) to hydrogen peroxide, a diffusible redox mediator, which modulates the activity of redox-sensitive ion channels and enzymes and serves as a signaling molecule., Teleologically, an oxygen sensor that relies on a parameter linked to Po2, (namely, ROS production that occurs as a byproduct of electron flux) but that resides proximal to ATP synthesis, permits a homeostatic response to counter hypoxia, without risking bioenergetic compromise. Oxygen sensing within the mammalian homeostatic oxygen sensing system relies on redox chemistry controlled by mitochondria and other redox sensors.

Figure 3
Figure Jump LinkFigure 3 Mitochondrial redox oxygen sensing. The sensor-effector mechanism of hypoxic pulmonary vasoconstriction (HPV). (A) Under normoxic conditions, generation of reactive oxygen species (ROS) occurs at mitochondrial electron transport chain (ETC) complexes I and III, producing superoxide (O2), which is converted to hydrogen peroxide (H2O2) by superoxide dismutase 2 (SOD2). Hydrogen peroxide, along with the oxidized redox couples (eg, nicotinamide adenine dinucleotide [NAD+], nicotinamide adenine dinucleotide phosphate [NADP+], and flavin adenine dinucleotide [FAD2+]) maintain Kv1.5 sulfhydryl group oxidation and channel open state, resulting in tonic egress of K+. This efflux of K+ sustains the resting membrane potential (ΔΨ) of the cell at –60 mV and inhibits voltage-gated calcium channel [CaL]-mediated Ca2+ influx into the cell. (B) During hypoxia, the limited presence of oxygen (1) prevents generation of hydrogen peroxide, (2) decreases the ratio of oxidized/reduced redox couples, and (3) reduces sulfhydryl groups on Kv1.5 channels, causing them to close. The subsequent buildup of K+ increases the resting membrane potential of the cell to –20 mV. This stimulates the opening of CaL, influx of Ca2+, and subsequent activation of the contractile apparatus (ie, vasoconstriction). ADP = adenosine diphosphate; FADH2 = flavin adenine dinucleotide; NADH = nicotinamide adenine dinucleotide.Grahic Jump Location

Although increased by endothelium-derived vasoconstrictors (eg, endothelin and thromboxane) and inhibited by endothelium-derived vasodilators (eg, nitric oxide and prostacyclin), the core effector mechanism of HPV lies within the PASMC. Here HPV is triggered by a mitochondrial redox signal that involves the coordinated response of voltage- and redox-sensitive potassium and calcium channels (Fig 3). Briefly, voltage-gated potassium channels (Kv) maintain a resting membrane potential of about –60 mV (reflective of tonic egress of K+ from the PASMC). This negative membrane potential decreases the opening of voltage-gated, L-type calcium channels. Outward potassium current is inhibited during hypoxia, depolarizing the membrane and increasing the open-state probability of calcium channels, causing an influx of Ca2+ into the cell down a 20,000:1 extracellular/intracellular Ca2+ gradient. This rise in cytosolic calcium and a subsequent rho kinase-mediated calcium sensitization causes PA constriction.,

Pharmacologic and electrophysiological experimentation using the patch clamp technique to study isolated PASMC from resistance PAs identified Kv as well as large conductance, voltage-gated calcium channels (CaL) in the effector mechanism of HPV., 4-Aminopyridine is a Kv channel blocker and elicits pulmonary vasoconstriction in isolated perfused rodent lungs. Additionally, CaL blockers nifedipine and verapamil inhibit the HPV response, whereas BAY K8644, a Ca2+-channel agonist, enhances the vasoconstrictive response to hypoxia, (Fig 4). However, these effector components of HPV do not differ substantially between pulmonary and systemic arteries, both of which constrict in response to K+ channel inhibitors and relax in response to calcium channel blockers. Rather, the tissue heterogeneity in response to hypoxia results primarily from differences in oxygen sensor (mitochondrial) function between smooth muscle cells in pulmonary vs systemic arteries.

Figure 4
Figure Jump LinkFigure 4 Voltage-gated calcium channels [CaL] and hypoxic pulmonary vasoconstriction (HPV). CaL agonist BAY K8644 and antagonist nifedipine exert opposing effects on HPV in the anesthetized hypoxic rat ventilated with 10% oxygen. This model of global hypoxia mimics changes that occur with ascent to altitude and results in a rapid increase in pulmonary artery pressure (PAP). (A) BAY K8644 enhances PA vasoconstriction during hypoxia. (B) Nifedipine administered during HPV inhibits CaL and reduces PAP. dPAP = diastolic PAP; ECG = electrocardiography; mPAP = mean PAP; sPAP = systolic PAP.Grahic Jump Location

Molecular identification of the ion channels involved in HPV has revealed central roles for Kv1.5, a Shaker channel, and Kv2.1., The Kv1.5 knockout mouse, for example, has markedly reduced HPV. However, there is evidence for the involvement of other classes of K+ and Ca2+ channels in the mechanism of HPV, including two-pore K+ channels,, which are active at very negative membrane potentials and thus are attractive targets for initiation of HPV. Although pharmacologic inhibition of these channels does not result in pulmonary vasoconstriction, some likely contribute to the PASMC’s electrophysiologic response to hypoxia. Likewise, in addition to the L-type Ca2+ channel, Ca2+ that contributes to HPV also derives from Ca2+-induced Ca2+ release. HPV also reflects calcium sensitization.

Although there is agreement that the mitochondria act as oxygen sensors and that ETC-derived ROS alter effector mechanisms that mediate vasoconstriction,,, controversy remains regarding whether hypoxia elicits a rise or a fall in ROS/hydrogen peroxide levels.,,,,, Briefly, it has been proposed that hypoxia increases ROS and reflects autoxidation of the ETC due to distal inhibition of the ETC., In contrast, our findings suggest that ROS production in PASMC increases as Po2 rises and decreases as Po2 falls. For example, we observe a rise in ROS levels in ductus arteriosus smooth muscle cells at birth as Po2 increases., Likewise, ROS levels are low in cardiac myocytes during ischemia and increase with reoxygenation during the reperfusion phase of myocardial ischemia/reperfusion injury. We observe that ROS (including hydrogen peroxide) decrease in PASMC mitochondria during physiological hypoxia, reflecting a reduced rate of electron flux caused by reduced availability of the terminal electron acceptor (molecular oxygen).

The basis for the discrepancies between those who find hypoxia to be an oxidized state with high ROS, vs those who find it to be a reduced state with low ROS, is unclear. Experimental discrepancies may relate to variation among groups in (1) the use of freshly isolated PASMC from resistance arteries, (2) the severity of hypoxia used, (3) attention to pH and Pco2, and (4) challenges in dynamic and accurate ROS measurement in subcellular compartments. Supporting the notion that hypoxia is a state of reduction (not oxidation), the opposing effects of hypoxia on the PA vs systemic vascular tone and cellular electrophysiology are mimicked by ETC inhibitors (eg, rotenone and antimycin A) and reducing agents (eg, dithiothreitol), rather than by ROS and oxidants., Proposed mechanisms should be judged by the degree to which they explain core properties of HPV, which is rapid, reversible, evoked by mild hypoxia, and does not induce edema. Moreover, a unifying mechanism should account for the opposing effects of hypoxia on tone in the pulmonary circulation (constriction) vs the ductus arteriosus and systemic vasculature (vasodilatation).

Although HPV is active in normal human physiology and patients with common lung diseases, it remains underappreciated by clinicians. In addition to optimizing V./Q.  matching and systemic oxygen delivery, HPV is exploited surgically to enhance oxygenation.

HPV is critical to single-lung anesthesia for patients undergoing thoracic surgery such as lung tumor resections. During these procedures, the patient is positioned on the side to facilitate surgical dissection, and single-lung ventilation is initiated using a double-lumen endobronchial tube (Fig 5A). During tube placement, the proximal and distal lumen tips are positioned above the carina and in the primary bronchus of the target lung, respectively (Fig 5B). Cuffs around each lumen are inflated to prevent air leakage and allow for selective ventilation of the nonoperative lung and collapse of the operative lung (Fig 5C). HPV within the nonventilated lung reduces perfusion by minimizing shunting that would otherwise lead to intraoperative systemic hypoxemia (Fig 5D) and excessive bleeding in the operative field (Fig 5E).

Figure 5
Figure Jump LinkFigure 5 Clinical application of hypoxic pulmonary vasoconstriction (HPV). Maintenance of Po2 during thoracic surgery through single-lung ventilation. (A) A Broncho-Cath double-lumen endotracheal tube (Covidien, Saint-Laurent, QC). The distal end (orange arrow) is inserted into the trachea until the bronchial lumen (inset, blue arrow) has entered either the right or left mainstem bronchus, whereas the tracheal lumen (inset, purple arrow) remains above the carina. (B) A bronchoscopic view of the carina from inside the tracheal lumen. The distal tip of the double-lumen endotracheal tube is seen entering the left mainstem bronchus to enable single-lung ventilation. (C) A clamp is placed on one limb of the ventilation circuit, allowing selective ventilation of the opposite lung. (D) Cardiorespiratory monitor during single-lung anesthesia/ventilation. The end tidal CO2 is elevated to 53 mm Hg because of the decreased ventilation (red arrow), whereas oxygen (O2) saturation is maintained at 99% (green arrow) and blood pressure (BP) remains stable (orange arrow) despite single-lung ventilation. (E) The nonventilated deflated lung undergoing surgery can be seen through an incision. Minimal bleeding is seen during surgery as a result of the HPV response. (F) Pneumonectomy specimen showing the complete lung removed with a large tumor (yellow box).Grahic Jump Location
The benefits of HPV during thoracic surgery may be attenuated by drugs or patient physiology. Volatile anesthetics, vasodilators, and hypothermia can inhibit HPV. Thus, anesthetic choices and temperature can be adjusted to optimize HPV in patients during single-lung ventilation. Historically, HPV has been enhanced pharmacologically using low doses of the respiratory stimulant almitrine. During single-lung ventilation, adding almitrine (4 μg/kg/min) to inhaled nitric oxide (NO) increases HPV and improves systemic oxygenation. Although almitrine was withdrawn from clinical use because of its potential to cause peripheral neuropathy, this drug illustrates the value of enhancing HPV as a means of improving V./Q.  matching and systemic oxygenation.
HPV also optimizes systemic Po2 in patients with atelectasis, pneumonia, COPD, and asthma by reducing V./Q.  mismatch and shunting (Table 1). During pneumonia or atelectasis, HPV optimizes systemic oxygen delivery by reducing perfusion of the hypoxic segment. HPV rapidly reverses on relief of atelectasis (eg, as occurs on removal of a mucous plug or with the use of incentive spirometry) or on resolution of pneumonia. The intensity of HPV varies between individuals and can diminish with disease or medication (Table 1).,,,,,,,,,,,,,, For example, calcium channel blockers, which are commonly prescribed for systemic hypertension or coronary artery disease (comorbidities of COPD) can reduce HPV. Illustrative of this point, patients with cor pulmonale (pulmonary hypertension secondary to COPD) given nifedipine (20 mg) exhibited a decrease in arterial Po2 (from 52 to 47 mm Hg) and displayed a concomitant deterioration of V./Q.  matching. The route of administration determines the effects of PA vasodilators on HPV. Inhaled vasodilators (eg, inhaled NO) may enhance V./Q.  matching, because they only reach well-ventilated lung segments (and thus do not impair HPV); conversely, IV vasodilators worsen V./Q.  matching by relaxing arterioles serving poorly ventilated lung segments. For example, after inducing PH in an isolated perfused rabbit lung model, Walmrath et al demonstrated that although IV prostacyclin vasodilator treatment reduced mean pulmonary artery pressure (mPAP) (from 35 to 25 mm Hg), it also increased shunt fraction (to about 60%). In contrast, inhaled NO similarly decreased mPAP but maintained shunt fraction at about 25%.
Table Graphic Jump Location
Table 1 The Role of HPV in Respiratory Disease

ALI = acute lung injury; HAPE = high-altitude pulmonary edema; HPV = hypoxic pulmonary vasoconstriction; mPAP = mean pulmonary artery pressure; NOS = nitric oxide synthase; V./Q.  = ventilation/perfusion.

Suppression of HPV is a common adaptation to life at high altitude. The yak (Bos grunniens), native to the Himalayan region of Central Asia (altitudes > 3,500 m) has blunted HPV and thus maintains low PAP. Conversely, domestic cattle (Bos taurus) are native to lowlands and exhibit substantial HPV at altitude, resulting in severe PH, edema, and right-sided heart failure in about 20% of cattle. The sustained HPV and adverse pulmonary vascular remodeling causes right-sided heart failure, which leads to peripheral edema. Because of the cow’s anatomy, this dependent edema collects in the neck (the brisket area), rather than in the legs, as would occur in humans. This neck swelling gave the name brisket disease to this lethal syndrome of excessive HPV and right-sided heart failure. Cattle native to high altitudes are less prone to exaggerated HPV and brisket disease., The crossbreeding of yak and cattle results in an animal that exhibits intermediate HPV. Anand et al found that the dzo (a cross between a cow and a yak) had pulmonary hemodynamics similar to those of the yak. In contrast, crossbreeding a dzo to a bull results in a stol. Half of the stols had pulmonary hemodynamics similar to the yak, whereas the other half resembled the cow. This variation indicates a genetic basis for “altitude resistance” in these animals., Newman et al assessed the genetics of exaggerated HPV and high-altitude PH by comparing susceptible and resistant cattle (PAP at altitude, 86 ± 13 mm Hg vs 35 ± 1 mm Hg, respectively). In altitude-susceptible cattle, the expression of 46 genes was upregulated, whereas the expression of 14 genes was downregulated. Microarray analysis identified respiratory diseases and inflammatory disease pathways as being disordered in susceptible cattle. The susceptible phenotype was associated with abnormal interleukin-6, triggering receptor expressed on myeloid cells, peroxisome proliferator-activated receptor, and nuclear factor κB signaling. Whole-exome sequencing has implicated a mutation in the HIF-2α-encoding gene (endothelial PAS domain-containing protein 1 [EPAS1]) in the pathogenesis of high-altitude PH in cattle. A double variant in EPAS1 causing two nonsynonymous amino acid substitutions in the oxygen-dependent degradation domain of HIF-2α was found in 75% of cattle with elevated mPAP (> 50 mm Hg) and in all high-altitude cattle with PH (mPAP > 94 mm Hg) studied. It is hypothesized that this double variant is a gain of function mutation causing upregulation of multiple HIF-2α targets such as vascular endothelial growth factor and transforming growth factor-α.

Human populations also display genetic variation in PAP at altitude. After millennia of living at altitudes > 4,000 m, native Tibetans exhibit minimal hypoxic PH (HPH) or polycythemia. In contrast, HPH is prevalent in native Quechua Indians living in the Andean highlands of Ecuador and Bolivia at altitudes of approximately 3,500 to 4,000 m., Similarly, children in Leadville, Colorado (the highest city in North America at about 3,100 m) commonly exhibit HPH. The severity of HPH in Leadville residents is similar to that of the Quechua, although the Coloradans live at much lower altitudes. Grover showed that many healthy athletic children in Leadville exhibited HPH (mPAP, 28 mm Hg and 61 mm Hg at rest and during exercise, respectively). This indicates a high prevalence of moderate asymptomatic PH in a population of recent high-altitude residents. It is thus hypothesized that the magnitude of HPV and HPH are inversely proportional to the duration of evolution at high altitude (25,000 years for Tibetans vs about 13,000 years for Andean Quechua vs less than a century for populations in Colorado). These studies in human and animal populations suggest genetic transmission of susceptibility or resistance to chronic hypoxia, and these variations likely relate to variations in the expression and function of components of the oxygen-sensing pathway.

Rapid ascent to high altitude without proper acclimation to the decreased oxygen tension can result in high-altitude pulmonary edema (HAPE), which is a noncardiogenic form of pulmonary edema that is characterized by cough, dyspnea, and reduced exercise performance, with usual onset within 2 to 5 days of ascension to altitudes > 2,500 m. Exaggerated and heterogeneous HPV is implicated in the pathophysiology of HAPE, (Table 1). The rapid rise in PAP stresses and distends the arterial walls. Within a short time, these changes exceed the load capacity of the resistance PA resulting in rupture of the basement membrane and the alveolar-capillary barrier, Interestingly, HAPE exhibits an individual susceptibility, being most common in people with exaggerated HPV. The 10% of whites that have exaggerated HPV are particularly susceptible to HAPE. Dehnert et al assessed 421 healthy whites who were naive to high altitude; subjects were exposed to normobaric hypoxia (simulating the hypoxia found at 4,500 m), and PAP was measured using Doppler echocardiography. Thirty-nine subjects displayed exaggerated HPV during a simulated ascent to 4,559 m over 24 hours (systolic PAP in hypoxia, 51 ± 6 mm Hg). Four (13%) of these volunteers experienced HAPE during a 48-hour exposure. In contrast, no subjects with normal intensity of HPV (systolic PAP in hypoxia, 33 ± 5 mm Hg) experienced HAPE. Moreover, in experimental models of ascent to altitude, suppression of HPV reduces HAPE. Isolated perfused rabbit lungs treated with acetazolamide (33 uM), which is an agent used clinically to prevent HAPE, exhibited less HPV (hypoxic mPAP about 15 mm Hg) than did control lungs (hypoxic mPAP about 20 mm Hg).

In addition to rupture of the alveolar-capillary barrier, hypoxia also inhibits alveolar fluid clearance within the lung. Under normal conditions, reabsorption of sodium through sodium channels and exchangers generates an osmotic gradient within the lung, allowing the reabsorption of water. Hypoxia inhibits the activity of sodium exchangers, thereby decreasing sodium transport and ultimately reducing fluid reabsorption in the lung.

HAPE is reversible provided that the patient receives adequate treatment in a timely manner. Improving oxygenation is the end goal, typically with supplemental oxygen and a rapid descent from altitude. Patients typically improve within hours of treatment with supplemental oxygen and rest. Complete clinical recovery is expected within days at low altitude. In emergencies, when immediate descent is not feasible, treatment of HAPE with agents that inhibit HPV, such as nifedipine or sildenafil, can relieve symptoms until descent to a lower altitude can safely occur.

Another instance of pathologic HPV occurs in Chuvash disease. Named for the mid-Volga River region of Russia, patients with Chuvash disease have enhanced HPV, polycythemia, and PH, despite normal inspired oxygen concentrations. Patients with Chuvash disease have a missense mutation within the von Hippel-Lindau gene (VHL). This mutation impairs the VHL’s ability to interact with the α-subunits of HIF-1α and HIF-2α. Under normoxic conditions, HIF proteins are hydroxylated by prolyl hydroxylases, which causes them to be ubiquitinated by VHL, thereby targeting HIF for proteasomal degradation. During hypoxia, HIF proteins are not hydroxylated nor are they bound by VHL, and thus degradation is impaired. The Chuvash VHL mutation impairs the ability of VHL-HIF interaction, resulting in normoxic HIF stabilization and paradoxical normoxic transcription of HIF-regulated genes, such as erythropoietin.,, Thus, patients with Chuvash disease function as if they were exposed to chronic hypoxia due to derangement of normal oxygen sensing.

Fawn hooded rats, like patients with Chuvash disease, spontaneously develop PH and mild polycythemia with age. They too have normoxic activation of HIF-1α, although in fawn hooded rats this reflects epigenetic silencing of mitochondrial SOD2. HIF is also a redox-regulated, oxygen-sensing mechanism; however, its protean transcription-mediated effects have a slower onset than do the ion-channel-initiated vascular response to hypoxia. Conditions in which oxygen sensing is disordered remind us that pseudohypoxic signaling can contribute to human diseases such as HPH. Indeed, the Warburg paradigm in cancer is another example of impaired oxygen sensing leading to abnormalities of metabolism, cell proliferation, and apoptosis.

The ability of PASMC in small resistance PAs to sense changes in oxygen and trigger HPV optimizes oxygen uptake and systemic oxygen delivery. HPV reflects an elegant interaction between a mitochondrial-redox sensor and an effector, which comprises redox-sensitive ion channels, enzymes, and transcription factors. HPV is important in the fetal circulation and is active in optimizing oxygenation in normal humans. HPV optimizes systemic oxygen delivery in various lung diseases, including atelectasis, pneumonia, and COPD. Clinicians should be mindful that inadvertent suppression of HPV by vasodilator drugs can lead to V./Q.  mismatch and systemic hypoxemia; conversely, HPV can be inhibited to prevent or treat HAPE. HPV can also be exploited during single-lung ventilation to facilitate lung surgery.

Financial/nonfinancial disclosures: None declared.

Role of sponsors: The sponsor had no role in the design of the study, the collection and analysis of the data, or the preparation of the manuscript.

Additional information: The Video can be found in the Supplemental Materials section of the online article.

Bradford J.R. .Dean H.P. . The pulmonary circulation. J Physiol. 1894;16:34-110 [PubMed]journal. [CrossRef] [PubMed]
 
Euler U.S.V. .Liljestrand G. . Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand. 1946;12:301-320 [PubMed]journal. [CrossRef]
 
Madden J.A. .Dawson C.A. .Harder D.R. . Hypoxia-induced activation in small isolated pulmonary arteries from the cat. J Appl Physiol (1985). 1985;59:113-118 [PubMed]journal. [PubMed]
 
Baraka A.S. .Taha S.K. .Yaacoub C.I. . Alarming hypoxemia during one-lung ventilation in a patient with respiratory bronchiolitis-associated interstitial lung disease. Can J Cardiol. 2003;50:411-414 [PubMed]journal
 
Jensen K.S. .Micco A.J. .Czartolomna J. .Latham L. .Voelkel N.F. . Rapid onset of hypoxic vasoconstriction in isolated lungs. J Appl Physiol (1985). 1992;72:2018-2023 [PubMed]journal. [PubMed]
 
Grant J.L. .Naylor R.W. .Crandell W.B. . Bronchial adenoma resection with relief of hypoxic pulmonary vasoconstriction. Chest. 1980;77:446-449 [PubMed]journal. [CrossRef] [PubMed]
 
Shirai M. .Ninomiya I. .Sada K. . Constrictor response of small pulmonary arteries to acute pulmonary hypertension during left atrial pressure elevation. Jpn J Physiol. 1991;41:129-142 [PubMed]journal. [CrossRef] [PubMed]
 
Madden J.A. .Vadula M.S. .Kurup V.P. . Effects of hypoxia and other vasoactive agents on pulmonary and cerebral artery smooth muscle cells. Am J Physiol. 1992;263:L384-L393 [PubMed]journal. [PubMed]
 
Michelakis E.D. .Hampl V. .Nsair A. .et al Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circ Res. 2002;90:1307-1315 [PubMed]journal. [CrossRef] [PubMed]
 
Yuan X.J. .Tod M.L. .Rubin L.J. .Blaustein M.P. . Contrasting effects of hypoxia on tension in rat pulmonary and mesenteric arteries. Am J Physiol. 1990;259:H281-H289 [PubMed]journal. [PubMed]
 
Archer S.L. .Weir E.K. .Wilkins M.R. . Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation. 2010;121:2045-2066 [PubMed]journal. [CrossRef] [PubMed]
 
Archer S.L. .Will J.A. .Weir E.K. . Redox status in the control of pulmonary vascular tone. Herz. 1986;11:127-141 [PubMed]journal. [PubMed]
 
Moudgil R. .Michelakis E.D. .Archer S.L. . Hypoxic pulmonary vasoconstriction. J Appl Physiol (1985). 2005;98:390-403 [PubMed]journal. [PubMed]
 
Rounds S. .McMurtry I.F. . Inhibitors of oxidative ATP production cause transient vasoconstriction and block subsequent pressor responses in rat lungs. Circ Res. 1981;48:393-400 [PubMed]journal. [CrossRef] [PubMed]
 
Weir E.K. .Archer S.L. . The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB J. 1995;9:183-189 [PubMed]journal. [PubMed]
 
Hong Z. .Kutty S. .Toth P.T. .et al Role of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission in oxygen sensing and constriction of the ductus arteriosus. Circ Res. 2013;112:802-815 [PubMed]journal. [CrossRef] [PubMed]
 
Mitchell P. . Aspects of the chemiosmotic hypothesis. Biochem J. 1970;116:5P-6P [PubMed]journal. [CrossRef] [PubMed]
 
Jonckheere A.I. .Smeitink J.A. .Rodenburg R.J. . Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis. 2012;35:211-225 [PubMed]journal. [CrossRef] [PubMed]
 
Margulis L. . Genetic and evolutionary consequences of symbiosis. Exp Parasitol. 1976;39:277-349 [PubMed]journal. [CrossRef] [PubMed]
 
Archer S.L. . Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. N Engl J Med. 2013;369:2236-2251 [PubMed]journal. [CrossRef] [PubMed]
 
Michelakis E.D. .Rebeyka I. .Wu X. .et al Oxygen sensing in the human ductus arteriosus: regulation of voltage-gated K+ channels in smooth muscle cells by a mitochondrial redox sensor. Circ Res. 2002;91:478-486 [PubMed]journal. [CrossRef] [PubMed]
 
Michelakis E.D. .Thebaud B. .Weir E.K. .Archer S.L. . Hypoxic pulmonary vasoconstriction: redox regulation of oxygen-sensitive K+ channels by a mitochondrial oxygen-sensor in resistance artery smooth muscle cells. J Mol Cell Cardiol. 2004;37:1119-1136 [PubMed]journal. [PubMed]
 
Weir E.K. .Lopez-Barneo J. .Buckler K.J. .Archer S.L. . Acute oxygen-sensing mechanisms. N Engl J Med. 2005;353:2042-2055 [PubMed]journal. [CrossRef] [PubMed]
 
McMurtry I.F. .Davidson A.B. .Reeves J.T. .Grover R.F. . Inhibition of hypoxic pulmonary vasoconstriction by calcium antagonists in isolated rat lungs. Circ Res. 1976;38:99-104 [PubMed]journal. [CrossRef]
 
Post J.M. .Hume J.R. .Archer S.L. .Weir E.K. . Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am J Physiol. 1992;262:C882-C890 [PubMed]journal. [PubMed]
 
Archer S.L. .Wu X.C. .Thebaud B. .et al Preferential expression and function of voltage-gated, oxygen-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells. Circ Res. 2004;95:308-318 [PubMed]journal. [CrossRef] [PubMed]
 
Hasunuma K. .Rodman D.M. .McMurtry I.F. . Effects of K+ channel blockers on vascular tone in the perfused rat lung. Am Rev Respir Dis. 1991;144:884-887 [PubMed]journal. [CrossRef] [PubMed]
 
McMurtry I.F. . BAY K 8644 potentiates and A23187 inhibits hypoxic vasoconstriction in rat lungs. Am J Physiol. 1985;249:H741-H746 [PubMed]journal. [PubMed]
 
Archer S.L. .Souil E. .Dinh-Xuan A.T. .et al Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J Clin Invest. 1998;101:2319-2330 [PubMed]journal. [CrossRef] [PubMed]
 
Firth A.L. .Remillard C.V. .Platoshyn O. .Fantozzi I. .Ko E.A. .Yuan J.X. . Functional ion channels in human pulmonary artery smooth muscle cells: Voltage-dependent cation channels. Pulm Circ. 2011;1:48-71 [PubMed]journal. [CrossRef] [PubMed]
 
Archer S.L. .London B. .Hampl V. .et al Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5. FASEB J. 2001;15:1801-1803 [PubMed]journal. [PubMed]
 
Ward J.P. . Point: Hypoxic pulmonary vasoconstriction is mediated by increased production of reactive oxygen species. J Appl Physiol (1985). 2006;101:993-995 [PubMed]journal. [CrossRef] [PubMed]
 
Duprat F. .Guillemare E. .Romey G. .et al Susceptibility of cloned K+ channels to reactive oxygen species. Proc Natl Acad Sci U S A. 1995;92:11796-11800 [PubMed]journal. [CrossRef] [PubMed]
 
Gardener M.J. .Johnson I.T. .Burnham M.P. .Edwards G. .Heagerty A.M. .Weston A.H. . Functional evidence of a role for two-pore domain potassium channels in rat mesenteric and pulmonary arteries. Br J Pharmacol. 2004;142:192-202 [PubMed]journal. [CrossRef] [PubMed]
 
Ward J.P. .McMurtry I.F. . Mechanisms of hypoxic pulmonary vasoconstriction and their roles in pulmonary hypertension: new findings for an old problem. Curr Opin Pharmacol. 2009;9:287-296 [PubMed]journal. [CrossRef] [PubMed]
 
Archer S.L. .Huang J. .Henry T. .Peterson D. .Weir E.K. . A redox-based oxygen sensor in rat pulmonary vasculature. Circ Res. 1993;73:1100-1112 [PubMed]journal. [CrossRef] [PubMed]
 
Archer S.L. .Nelson D.P. .Weir E.K. . Simultaneous measurement of oxygen radicals and pulmonary vascular reactivity in rat lung. J Appl Physiol (1985). 1989;67:1903-1911 [PubMed]journal. [PubMed]
 
Paky A. .Michael J.R. .Burke-Wolin T.M. .Wolin M.S. .Gurtner G.H. . Endogenous production of superoxide by rabbit lungs: effects of hypoxia or metabolic inhibitors. J Appl Physiol (1985). 1993;74:2868-2874 [PubMed]journal. [PubMed]
 
Chandel N.S. .McClintock D.S. .Feliciano C.E. .et al Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of oxygen sensing. J Biol Chem. 2000;275:25130-25138 [PubMed]journal. [CrossRef] [PubMed]
 
Guzy R.D. .Hoyos B. .Robin E. .et al Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1:401-408 [PubMed]journal. [CrossRef] [PubMed]
 
Waypa G.B. .Chandel N.S. .Schumacker P.T. . Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res. 2001;88:1259-1266 [PubMed]journal. [CrossRef] [PubMed]
 
Waypa G.B. .Marks J.D. .Mack M.M. .Boriboun C. .Mungai P.T. .Schumacker P.T. . Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res. 2002;91:719-726 [PubMed]journal. [CrossRef] [PubMed]
 
Weir E.K. .Archer S.L. . Counterpoint: hypoxic pulmonary vasoconstriction is not mediated by increased production of reactive oxygen species. J Appl Physiol (1985). 2006;101:995-998 [PubMed]journal. [CrossRef] [PubMed]
 
Thebaud B. .Wu X.C. .Kajimoto H. .et al Developmental absence of the oxygen sensitivity of L-type calcium channels in preterm ductus arteriosus smooth muscle cells impairs oxygen constriction contributing to patent ductus arteriosus. Pediatr Res. 2008;63:176-181 [PubMed]journal. [CrossRef] [PubMed]
 
Archer S.L. .Wu X.C. .Thebaud B. .Moudgil R. .Hashimoto K. .Michelakis E.D. . O2 sensing in the human ductus arteriosus: redox-sensitive K+ channels are regulated by mitochondria-derived hydrogen peroxide. Biol Chem. 2004;385:205-216 [PubMed]journal. [PubMed]
 
Henry T.D. .Archer S.L. .Nelson D. .Weir E.K. .From A.H. . Postischemic oxygen radical production varies with duration of ischemia. Am J Physiol. 1993;264:H1478-H1484 [PubMed]journal. [PubMed]
 
Reeve H.L. .Michelakis E. .Nelson D.P. .Weir E.K. .Archer S.L. . Alterations in a redox oxygen sensing mechanism in chronic hypoxia. J Appl Physiol (1985). 2001;90:2249-2256 [PubMed]journal. [PubMed]
 
Nagendran J. .Stewart K. .Hoskinson M. .Archer S.L. . An anesthesiologist's guide to hypoxic pulmonary vasoconstriction: implications for managing single-lung anesthesia and atelectasis. Curr Opin Anaesthesiol. 2006;19:34-43 [PubMed]journal. [CrossRef] [PubMed]
 
Silva-Costa-Gomes T. .Gallart L. .Valles J. .Trillo L. .Minguella J. .Puig M.M. . Low- vs high-dose almitrine combined with nitric oxide to prevent hypoxia during open-chest one-lung ventilation. Br J Anaesth. 2005;95:410-416 [PubMed]journal. [CrossRef] [PubMed]
 
Bartsch P. .Maggiorini M. .Ritter M. .Noti C. .Vock P. .Oelz O. . Prevention of high-altitude pulmonary edema by nifedipine. N Engl J Med. 1991;325:1284-1289 [PubMed]journal. [CrossRef] [PubMed]
 
Hackett P.H. .Creagh C.E. .Grover R.F. .et al High-altitude pulmonary edema in persons without the right pulmonary artery. N Engl J Med. 1980;302:1070-1073 [PubMed]journal. [CrossRef] [PubMed]
 
Hultgren H.N. . High-altitude pulmonary edema: current concepts. Ann Rev Med. 1996;47:267-284 [PubMed]journal. [CrossRef] [PubMed]
 
Lumb A.B. .Slinger P. . Hypoxic pulmonary vasoconstriction: physiology and anesthetic implications. Anesthesiology. 2015;122:932-946 [PubMed]journal. [CrossRef] [PubMed]
 
Rodriguez-Roisin R. .Ballester E. .Roca J. .Torres A. .Wagner P.D. . Mechanisms of hypoxemia in patients with status asthmaticus requiring mechanical ventilation. Am Rev Respir Dis. 1989;139:732-739 [PubMed]journal. [CrossRef] [PubMed]
 
Piercy V. .Smith H. .Arch J.R. . Effects of isoprenaline, adrenaline and selective alpha 1- and alpha 2- adrenoceptor stimulation on hypoxic pulmonary vasoconstriction in rat isolated perfused lungs. Pulmon Pharmacol. 1990;3:59-63 [PubMed]journal. [CrossRef]
 
Knudson R.J. .Constantine H.P. . An effect of isoproterenol on ventilation-perfusion in asthmatic versus normal subjects. J Appl Physiol. 1967;22:402-406 [PubMed]journal. [PubMed]
 
Sylvester J.T. .Shimoda L.A. .Aaronson P.I. .Ward J.P. . Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012;92:367-520 [PubMed]journal. [CrossRef] [PubMed]
 
Weitzenblum E. .Kessler R. .Oswald M. .Fraisse P. . Medical treatment of pulmonary hypertension in chronic lung disease. Eur Respir J. 1994;7:148-152 [PubMed]journal. [CrossRef] [PubMed]
 
Melot C. .Naeije R. .Rothschild T. .Mertens P. .Mols P. .Hallemans R. . Improvement in ventilation-perfusion matching by almitrine in COPD. Chest. 1983;83:528-533 [PubMed]journal. [CrossRef] [PubMed]
 
Light R.B. . Indomethacin and acetylsalicylic acid reduce intrapulmonary shunt in experimental pneumococcal pneumonia. Am Rev Respir Dis. 1986;134:520-525 [PubMed]journal. [PubMed]
 
Archer S.L. .Mike D. .Crow J. .Long W. .Weir E.K. . A placebo-controlled trial of prostacyclin in acute respiratory failure in COPD. Chest. 1996;109:750-755 [PubMed]journal. [CrossRef] [PubMed]
 
McCormack D.G. .Paterson N.A. . Loss of hypoxic pulmonary vasoconstriction in chronic pneumonia is not mediated by nitric oxide. Am J Physiol. 1993;265:H1523-H1528 [PubMed]journal. [PubMed]
 
Dantzker D.R. .Brook C.J. .Dehart P. .Lynch J.P. .Weg J.G. . Ventilation-perfusion distributions in the adult respiratory distress syndrome. Am Rev Respir Dis. 1979;120:1039-1052 [PubMed]journal. [PubMed]
 
Enkhbaatar P. .Murakami K. .Shimoda K. .et al The inducible nitric oxide synthase inhibitor BBS-2 prevents acute lung injury in sheep after burn and smoke inhalation injury. Am J Respir Crit Med. 2003;167:1021-1026 [PubMed]journal. [CrossRef]
 
Melot C. .Hallemans R. .Naeije R. .Mols P. .Lejeune P. . Deleterious effect of nifedipine on pulmonary gas exchange in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1984;130:612-616 [PubMed]journal. [PubMed]
 
Walmrath D. .Schermuly R. .Pilch J. .Grimminger F. .Seeger W. . Effects of inhaled versus intravenous vasodilators in experimental pulmonary hypertension. Eur Respir J. 1997;10:1084-1092 [PubMed]journal. [CrossRef] [PubMed]
 
Durmowicz A.G. .Hofmeister S. .Kadyraliev T.K. .Aldashev A.A. .Stenmark K.R. . Functional and structural adaptation of the yak pulmonary circulation to residence at high altitude. J Appl Physiol (1985). 1993;74:2276-2285 [PubMed]journal. [PubMed]
 
Newman J.H. .Holt T.N. .Hedges L.K. .et al High-altitude pulmonary hypertension in cattle (brisket disease): candidate genes and gene expression profiling of peripheral blood mononuclear cells. Pulm Circ. 2011;1:462-469 [PubMed]journal. [CrossRef] [PubMed]
 
Glover G.H. .Newsou L. . Further studies on brisket disease. J Agricultural Res. 1918;15:409- [PubMed]journal
 
Grover R.F. . Pulmonary circulation in animals and man at high altitude. Ann NY Acad Sci. 1965;127:632-639 [PubMed]journal. [PubMed]
 
Anand I.S. .Harris E. .Ferrari R. .Pearce P. .Harris P. . Pulmonary haemodynamics of the yak, cattle, and cross breeds at high altitude. Thorax. 1986;41:696-700 [PubMed]journal. [CrossRef] [PubMed]
 
Will D.H. .Hicks J.L. .Card C.S. .Alexander A.F. . Inherited susceptibility of cattle to high-altitude pulmonary hypertension. J Appl Physiol. 1975;38:491-494 [PubMed]journal. [PubMed]
 
Newman J.H. .Holt T.N. .Cogan J.D. .et al Increased prevalence of EPAS1 variant in cattle with high-altitude pulmonary hypertension. Nature Commun. 2015;6:6863- [PubMed]journal. [CrossRef]
 
Groves B.M. .Droma T. .Sutton J.R. .et al Minimal hypoxic pulmonary hypertension in normal Tibetans at 3,658 m. J Appl Physiol (1985). 1993;74:312-318 [PubMed]journal. [PubMed]
 
Peñaloza D. .Sime F. .Banchero N. .Gamboa R. .Cruz J. .Marticorena E. . Pulmonary hypertension in healthy men born and living at high altitudes. Am J Cardiol. 1963;11:150-157 [PubMed]journal. [CrossRef]
 
Bhagi S. .Srivastava S. .Singh S.B. . High-altitude pulmonary edema: review. J Occup Health. 2014;56:235-243 [PubMed]journal. [CrossRef] [PubMed]
 
Bartsch P. .Mairbaurl H. .Swenson E.R. .Maggiorini M. . High altitude pulmonary oedema. Swiss Med Wkly. 2003;133:377-384 [PubMed]journal. [PubMed]
 
Dehnert C. .Mereles D. .Greiner S. .et al Exaggerated hypoxic pulmonary vasoconstriction without susceptibility to high altitude pulmonary edema. High Alt Med Biol. 2015;16:11-17 [PubMed]journal. [CrossRef] [PubMed]
 
Deem S. .Hedges R.G. .Kerr M.E. .Swenson E.R. . Acetazolamide reduces hypoxic pulmonary vasoconstriction in isolated perfused rabbit lungs. Respir Physiol. 2000;123:109-119 [PubMed]journal. [CrossRef] [PubMed]
 
Maggiorini M. . High altitude-induced pulmonary oedema. Cardiovasc Res. 2006;72:41-50 [PubMed]journal. [CrossRef] [PubMed]
 
Oelz O. .Maggiorini M. .Ritter M. .et al Nifedipine for high altitude pulmonary oedema. Lancet. 1989;2:1241-1244 [PubMed]journal. [PubMed]
 
Ang S.O. .Chen H. .Hirota K. .et al Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nat Genet. 2002;32:614-621 [PubMed]journal. [CrossRef] [PubMed]
 
Hickey M.M. .Richardson T. .Wang T. .et al The von Hippel-Lindau Chuvash mutation promotes pulmonary hypertension and fibrosis in mice. J Clin Invest. 2010;120:827-839 [PubMed]journal. [CrossRef] [PubMed]
 
Smith T.G. .Brooks J.T. .Balanos G.M. .et al Mutation of von Hippel-Lindau tumour suppressor and human cardiopulmonary physiology. PLoS Med. 2006;3:e290- [PubMed]journal. [CrossRef] [PubMed]
 
Archer S.L. .Marsboom G. .Kim G.H. .et al Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation. 2010;121:2661-2671 [PubMed]journal. [CrossRef] [PubMed]
 
Jin W.S. .Kong Z.L. .Shen Z.F. .Jin Y.Z. .Zhang W.K. .Chen G.F. . Regulation of hypoxia inducible factor-1alpha expression by the alteration of redox status in HepG2 cells. J Exp Cancer Res. 2011;30:61- [PubMed]journal. [CrossRef]
 
Archer S.L. .Gomberg-Maitland M. .Maitland M.L. .Rich S. .Garcia J.G. .Weir E.K. . Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1alpha-Kv1.5 oxygen-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol. 2008;294:H570-H578 [PubMed]journal. [CrossRef] [PubMed]
 

Figures

Figure Jump LinkFigure 1 Matched vs mismatched ventilation/perfusion (V./Q. ) defects. (A) Matched V./Q.  defect due to interstitial lung disease. An 83-year-old man with shortness of breath on exertion. Chest CT showed interstitial lung disease with a basal predominance consistent with usual interstitial pneumonitis. (B) Mismatched defect indicating pulmonary embolism. A 57-year-old man with obesity, hypertension, and OSA presenting with shortness of breath and desaturation with minimal exertion. PA = posteroanterior; LAT = lateral.Grahic Jump Location
Figure Jump LinkFigure 2 Pulmonary artery (PA) mitochondrial network. (A) Mitochondria in pulmonary artery smooth muscle cells from a normal patient were stained with 20 nM tetramethylrhodamine and imaged using confocal microscopy. Nuclei stained with NucBlue Live Cell Stain. (B) Bovine pulmonary artery (PA) endothelial cells stained for mitochondria (inset: red, MitoTracker Red CMXRos), phalloidin (green, Alexa Fluor 488), and nucleus (blue, 4′,6-diamidino-2-phenylindole) and imaged using confocal microscopy. All dyes/stains from Life Technologies (Carlsbad, CA).Grahic Jump Location
Figure Jump LinkFigure 3 Mitochondrial redox oxygen sensing. The sensor-effector mechanism of hypoxic pulmonary vasoconstriction (HPV). (A) Under normoxic conditions, generation of reactive oxygen species (ROS) occurs at mitochondrial electron transport chain (ETC) complexes I and III, producing superoxide (O2), which is converted to hydrogen peroxide (H2O2) by superoxide dismutase 2 (SOD2). Hydrogen peroxide, along with the oxidized redox couples (eg, nicotinamide adenine dinucleotide [NAD+], nicotinamide adenine dinucleotide phosphate [NADP+], and flavin adenine dinucleotide [FAD2+]) maintain Kv1.5 sulfhydryl group oxidation and channel open state, resulting in tonic egress of K+. This efflux of K+ sustains the resting membrane potential (ΔΨ) of the cell at –60 mV and inhibits voltage-gated calcium channel [CaL]-mediated Ca2+ influx into the cell. (B) During hypoxia, the limited presence of oxygen (1) prevents generation of hydrogen peroxide, (2) decreases the ratio of oxidized/reduced redox couples, and (3) reduces sulfhydryl groups on Kv1.5 channels, causing them to close. The subsequent buildup of K+ increases the resting membrane potential of the cell to –20 mV. This stimulates the opening of CaL, influx of Ca2+, and subsequent activation of the contractile apparatus (ie, vasoconstriction). ADP = adenosine diphosphate; FADH2 = flavin adenine dinucleotide; NADH = nicotinamide adenine dinucleotide.Grahic Jump Location
Figure Jump LinkFigure 4 Voltage-gated calcium channels [CaL] and hypoxic pulmonary vasoconstriction (HPV). CaL agonist BAY K8644 and antagonist nifedipine exert opposing effects on HPV in the anesthetized hypoxic rat ventilated with 10% oxygen. This model of global hypoxia mimics changes that occur with ascent to altitude and results in a rapid increase in pulmonary artery pressure (PAP). (A) BAY K8644 enhances PA vasoconstriction during hypoxia. (B) Nifedipine administered during HPV inhibits CaL and reduces PAP. dPAP = diastolic PAP; ECG = electrocardiography; mPAP = mean PAP; sPAP = systolic PAP.Grahic Jump Location
Figure Jump LinkFigure 5 Clinical application of hypoxic pulmonary vasoconstriction (HPV). Maintenance of Po2 during thoracic surgery through single-lung ventilation. (A) A Broncho-Cath double-lumen endotracheal tube (Covidien, Saint-Laurent, QC). The distal end (orange arrow) is inserted into the trachea until the bronchial lumen (inset, blue arrow) has entered either the right or left mainstem bronchus, whereas the tracheal lumen (inset, purple arrow) remains above the carina. (B) A bronchoscopic view of the carina from inside the tracheal lumen. The distal tip of the double-lumen endotracheal tube is seen entering the left mainstem bronchus to enable single-lung ventilation. (C) A clamp is placed on one limb of the ventilation circuit, allowing selective ventilation of the opposite lung. (D) Cardiorespiratory monitor during single-lung anesthesia/ventilation. The end tidal CO2 is elevated to 53 mm Hg because of the decreased ventilation (red arrow), whereas oxygen (O2) saturation is maintained at 99% (green arrow) and blood pressure (BP) remains stable (orange arrow) despite single-lung ventilation. (E) The nonventilated deflated lung undergoing surgery can be seen through an incision. Minimal bleeding is seen during surgery as a result of the HPV response. (F) Pneumonectomy specimen showing the complete lung removed with a large tumor (yellow box).Grahic Jump Location

Tables

Table Graphic Jump Location
Table 1 The Role of HPV in Respiratory Disease

ALI = acute lung injury; HAPE = high-altitude pulmonary edema; HPV = hypoxic pulmonary vasoconstriction; mPAP = mean pulmonary artery pressure; NOS = nitric oxide synthase; V./Q.  = ventilation/perfusion.

References

Bradford J.R. .Dean H.P. . The pulmonary circulation. J Physiol. 1894;16:34-110 [PubMed]journal. [CrossRef] [PubMed]
 
Euler U.S.V. .Liljestrand G. . Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand. 1946;12:301-320 [PubMed]journal. [CrossRef]
 
Madden J.A. .Dawson C.A. .Harder D.R. . Hypoxia-induced activation in small isolated pulmonary arteries from the cat. J Appl Physiol (1985). 1985;59:113-118 [PubMed]journal. [PubMed]
 
Baraka A.S. .Taha S.K. .Yaacoub C.I. . Alarming hypoxemia during one-lung ventilation in a patient with respiratory bronchiolitis-associated interstitial lung disease. Can J Cardiol. 2003;50:411-414 [PubMed]journal
 
Jensen K.S. .Micco A.J. .Czartolomna J. .Latham L. .Voelkel N.F. . Rapid onset of hypoxic vasoconstriction in isolated lungs. J Appl Physiol (1985). 1992;72:2018-2023 [PubMed]journal. [PubMed]
 
Grant J.L. .Naylor R.W. .Crandell W.B. . Bronchial adenoma resection with relief of hypoxic pulmonary vasoconstriction. Chest. 1980;77:446-449 [PubMed]journal. [CrossRef] [PubMed]
 
Shirai M. .Ninomiya I. .Sada K. . Constrictor response of small pulmonary arteries to acute pulmonary hypertension during left atrial pressure elevation. Jpn J Physiol. 1991;41:129-142 [PubMed]journal. [CrossRef] [PubMed]
 
Madden J.A. .Vadula M.S. .Kurup V.P. . Effects of hypoxia and other vasoactive agents on pulmonary and cerebral artery smooth muscle cells. Am J Physiol. 1992;263:L384-L393 [PubMed]journal. [PubMed]
 
Michelakis E.D. .Hampl V. .Nsair A. .et al Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circ Res. 2002;90:1307-1315 [PubMed]journal. [CrossRef] [PubMed]
 
Yuan X.J. .Tod M.L. .Rubin L.J. .Blaustein M.P. . Contrasting effects of hypoxia on tension in rat pulmonary and mesenteric arteries. Am J Physiol. 1990;259:H281-H289 [PubMed]journal. [PubMed]
 
Archer S.L. .Weir E.K. .Wilkins M.R. . Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation. 2010;121:2045-2066 [PubMed]journal. [CrossRef] [PubMed]
 
Archer S.L. .Will J.A. .Weir E.K. . Redox status in the control of pulmonary vascular tone. Herz. 1986;11:127-141 [PubMed]journal. [PubMed]
 
Moudgil R. .Michelakis E.D. .Archer S.L. . Hypoxic pulmonary vasoconstriction. J Appl Physiol (1985). 2005;98:390-403 [PubMed]journal. [PubMed]
 
Rounds S. .McMurtry I.F. . Inhibitors of oxidative ATP production cause transient vasoconstriction and block subsequent pressor responses in rat lungs. Circ Res. 1981;48:393-400 [PubMed]journal. [CrossRef] [PubMed]
 
Weir E.K. .Archer S.L. . The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB J. 1995;9:183-189 [PubMed]journal. [PubMed]
 
Hong Z. .Kutty S. .Toth P.T. .et al Role of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission in oxygen sensing and constriction of the ductus arteriosus. Circ Res. 2013;112:802-815 [PubMed]journal. [CrossRef] [PubMed]
 
Mitchell P. . Aspects of the chemiosmotic hypothesis. Biochem J. 1970;116:5P-6P [PubMed]journal. [CrossRef] [PubMed]
 
Jonckheere A.I. .Smeitink J.A. .Rodenburg R.J. . Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis. 2012;35:211-225 [PubMed]journal. [CrossRef] [PubMed]
 
Margulis L. . Genetic and evolutionary consequences of symbiosis. Exp Parasitol. 1976;39:277-349 [PubMed]journal. [CrossRef] [PubMed]
 
Archer S.L. . Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. N Engl J Med. 2013;369:2236-2251 [PubMed]journal. [CrossRef] [PubMed]
 
Michelakis E.D. .Rebeyka I. .Wu X. .et al Oxygen sensing in the human ductus arteriosus: regulation of voltage-gated K+ channels in smooth muscle cells by a mitochondrial redox sensor. Circ Res. 2002;91:478-486 [PubMed]journal. [CrossRef] [PubMed]
 
Michelakis E.D. .Thebaud B. .Weir E.K. .Archer S.L. . Hypoxic pulmonary vasoconstriction: redox regulation of oxygen-sensitive K+ channels by a mitochondrial oxygen-sensor in resistance artery smooth muscle cells. J Mol Cell Cardiol. 2004;37:1119-1136 [PubMed]journal. [PubMed]
 
Weir E.K. .Lopez-Barneo J. .Buckler K.J. .Archer S.L. . Acute oxygen-sensing mechanisms. N Engl J Med. 2005;353:2042-2055 [PubMed]journal. [CrossRef] [PubMed]
 
McMurtry I.F. .Davidson A.B. .Reeves J.T. .Grover R.F. . Inhibition of hypoxic pulmonary vasoconstriction by calcium antagonists in isolated rat lungs. Circ Res. 1976;38:99-104 [PubMed]journal. [CrossRef]
 
Post J.M. .Hume J.R. .Archer S.L. .Weir E.K. . Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am J Physiol. 1992;262:C882-C890 [PubMed]journal. [PubMed]
 
Archer S.L. .Wu X.C. .Thebaud B. .et al Preferential expression and function of voltage-gated, oxygen-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells. Circ Res. 2004;95:308-318 [PubMed]journal. [CrossRef] [PubMed]
 
Hasunuma K. .Rodman D.M. .McMurtry I.F. . Effects of K+ channel blockers on vascular tone in the perfused rat lung. Am Rev Respir Dis. 1991;144:884-887 [PubMed]journal. [CrossRef] [PubMed]
 
McMurtry I.F. . BAY K 8644 potentiates and A23187 inhibits hypoxic vasoconstriction in rat lungs. Am J Physiol. 1985;249:H741-H746 [PubMed]journal. [PubMed]
 
Archer S.L. .Souil E. .Dinh-Xuan A.T. .et al Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J Clin Invest. 1998;101:2319-2330 [PubMed]journal. [CrossRef] [PubMed]
 
Firth A.L. .Remillard C.V. .Platoshyn O. .Fantozzi I. .Ko E.A. .Yuan J.X. . Functional ion channels in human pulmonary artery smooth muscle cells: Voltage-dependent cation channels. Pulm Circ. 2011;1:48-71 [PubMed]journal. [CrossRef] [PubMed]
 
Archer S.L. .London B. .Hampl V. .et al Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5. FASEB J. 2001;15:1801-1803 [PubMed]journal. [PubMed]
 
Ward J.P. . Point: Hypoxic pulmonary vasoconstriction is mediated by increased production of reactive oxygen species. J Appl Physiol (1985). 2006;101:993-995 [PubMed]journal. [CrossRef] [PubMed]
 
Duprat F. .Guillemare E. .Romey G. .et al Susceptibility of cloned K+ channels to reactive oxygen species. Proc Natl Acad Sci U S A. 1995;92:11796-11800 [PubMed]journal. [CrossRef] [PubMed]
 
Gardener M.J. .Johnson I.T. .Burnham M.P. .Edwards G. .Heagerty A.M. .Weston A.H. . Functional evidence of a role for two-pore domain potassium channels in rat mesenteric and pulmonary arteries. Br J Pharmacol. 2004;142:192-202 [PubMed]journal. [CrossRef] [PubMed]
 
Ward J.P. .McMurtry I.F. . Mechanisms of hypoxic pulmonary vasoconstriction and their roles in pulmonary hypertension: new findings for an old problem. Curr Opin Pharmacol. 2009;9:287-296 [PubMed]journal. [CrossRef] [PubMed]
 
Archer S.L. .Huang J. .Henry T. .Peterson D. .Weir E.K. . A redox-based oxygen sensor in rat pulmonary vasculature. Circ Res. 1993;73:1100-1112 [PubMed]journal. [CrossRef] [PubMed]
 
Archer S.L. .Nelson D.P. .Weir E.K. . Simultaneous measurement of oxygen radicals and pulmonary vascular reactivity in rat lung. J Appl Physiol (1985). 1989;67:1903-1911 [PubMed]journal. [PubMed]
 
Paky A. .Michael J.R. .Burke-Wolin T.M. .Wolin M.S. .Gurtner G.H. . Endogenous production of superoxide by rabbit lungs: effects of hypoxia or metabolic inhibitors. J Appl Physiol (1985). 1993;74:2868-2874 [PubMed]journal. [PubMed]
 
Chandel N.S. .McClintock D.S. .Feliciano C.E. .et al Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of oxygen sensing. J Biol Chem. 2000;275:25130-25138 [PubMed]journal. [CrossRef] [PubMed]
 
Guzy R.D. .Hoyos B. .Robin E. .et al Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1:401-408 [PubMed]journal. [CrossRef] [PubMed]
 
Waypa G.B. .Chandel N.S. .Schumacker P.T. . Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res. 2001;88:1259-1266 [PubMed]journal. [CrossRef] [PubMed]
 
Waypa G.B. .Marks J.D. .Mack M.M. .Boriboun C. .Mungai P.T. .Schumacker P.T. . Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res. 2002;91:719-726 [PubMed]journal. [CrossRef] [PubMed]
 
Weir E.K. .Archer S.L. . Counterpoint: hypoxic pulmonary vasoconstriction is not mediated by increased production of reactive oxygen species. J Appl Physiol (1985). 2006;101:995-998 [PubMed]journal. [CrossRef] [PubMed]
 
Thebaud B. .Wu X.C. .Kajimoto H. .et al Developmental absence of the oxygen sensitivity of L-type calcium channels in preterm ductus arteriosus smooth muscle cells impairs oxygen constriction contributing to patent ductus arteriosus. Pediatr Res. 2008;63:176-181 [PubMed]journal. [CrossRef] [PubMed]
 
Archer S.L. .Wu X.C. .Thebaud B. .Moudgil R. .Hashimoto K. .Michelakis E.D. . O2 sensing in the human ductus arteriosus: redox-sensitive K+ channels are regulated by mitochondria-derived hydrogen peroxide. Biol Chem. 2004;385:205-216 [PubMed]journal. [PubMed]
 
Henry T.D. .Archer S.L. .Nelson D. .Weir E.K. .From A.H. . Postischemic oxygen radical production varies with duration of ischemia. Am J Physiol. 1993;264:H1478-H1484 [PubMed]journal. [PubMed]
 
Reeve H.L. .Michelakis E. .Nelson D.P. .Weir E.K. .Archer S.L. . Alterations in a redox oxygen sensing mechanism in chronic hypoxia. J Appl Physiol (1985). 2001;90:2249-2256 [PubMed]journal. [PubMed]
 
Nagendran J. .Stewart K. .Hoskinson M. .Archer S.L. . An anesthesiologist's guide to hypoxic pulmonary vasoconstriction: implications for managing single-lung anesthesia and atelectasis. Curr Opin Anaesthesiol. 2006;19:34-43 [PubMed]journal. [CrossRef] [PubMed]
 
Silva-Costa-Gomes T. .Gallart L. .Valles J. .Trillo L. .Minguella J. .Puig M.M. . Low- vs high-dose almitrine combined with nitric oxide to prevent hypoxia during open-chest one-lung ventilation. Br J Anaesth. 2005;95:410-416 [PubMed]journal. [CrossRef] [PubMed]
 
Bartsch P. .Maggiorini M. .Ritter M. .Noti C. .Vock P. .Oelz O. . Prevention of high-altitude pulmonary edema by nifedipine. N Engl J Med. 1991;325:1284-1289 [PubMed]journal. [CrossRef] [PubMed]
 
Hackett P.H. .Creagh C.E. .Grover R.F. .et al High-altitude pulmonary edema in persons without the right pulmonary artery. N Engl J Med. 1980;302:1070-1073 [PubMed]journal. [CrossRef] [PubMed]
 
Hultgren H.N. . High-altitude pulmonary edema: current concepts. Ann Rev Med. 1996;47:267-284 [PubMed]journal. [CrossRef] [PubMed]
 
Lumb A.B. .Slinger P. . Hypoxic pulmonary vasoconstriction: physiology and anesthetic implications. Anesthesiology. 2015;122:932-946 [PubMed]journal. [CrossRef] [PubMed]
 
Rodriguez-Roisin R. .Ballester E. .Roca J. .Torres A. .Wagner P.D. . Mechanisms of hypoxemia in patients with status asthmaticus requiring mechanical ventilation. Am Rev Respir Dis. 1989;139:732-739 [PubMed]journal. [CrossRef] [PubMed]
 
Piercy V. .Smith H. .Arch J.R. . Effects of isoprenaline, adrenaline and selective alpha 1- and alpha 2- adrenoceptor stimulation on hypoxic pulmonary vasoconstriction in rat isolated perfused lungs. Pulmon Pharmacol. 1990;3:59-63 [PubMed]journal. [CrossRef]
 
Knudson R.J. .Constantine H.P. . An effect of isoproterenol on ventilation-perfusion in asthmatic versus normal subjects. J Appl Physiol. 1967;22:402-406 [PubMed]journal. [PubMed]
 
Sylvester J.T. .Shimoda L.A. .Aaronson P.I. .Ward J.P. . Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012;92:367-520 [PubMed]journal. [CrossRef] [PubMed]
 
Weitzenblum E. .Kessler R. .Oswald M. .Fraisse P. . Medical treatment of pulmonary hypertension in chronic lung disease. Eur Respir J. 1994;7:148-152 [PubMed]journal. [CrossRef] [PubMed]
 
Melot C. .Naeije R. .Rothschild T. .Mertens P. .Mols P. .Hallemans R. . Improvement in ventilation-perfusion matching by almitrine in COPD. Chest. 1983;83:528-533 [PubMed]journal. [CrossRef] [PubMed]
 
Light R.B. . Indomethacin and acetylsalicylic acid reduce intrapulmonary shunt in experimental pneumococcal pneumonia. Am Rev Respir Dis. 1986;134:520-525 [PubMed]journal. [PubMed]
 
Archer S.L. .Mike D. .Crow J. .Long W. .Weir E.K. . A placebo-controlled trial of prostacyclin in acute respiratory failure in COPD. Chest. 1996;109:750-755 [PubMed]journal. [CrossRef] [PubMed]
 
McCormack D.G. .Paterson N.A. . Loss of hypoxic pulmonary vasoconstriction in chronic pneumonia is not mediated by nitric oxide. Am J Physiol. 1993;265:H1523-H1528 [PubMed]journal. [PubMed]
 
Dantzker D.R. .Brook C.J. .Dehart P. .Lynch J.P. .Weg J.G. . Ventilation-perfusion distributions in the adult respiratory distress syndrome. Am Rev Respir Dis. 1979;120:1039-1052 [PubMed]journal. [PubMed]
 
Enkhbaatar P. .Murakami K. .Shimoda K. .et al The inducible nitric oxide synthase inhibitor BBS-2 prevents acute lung injury in sheep after burn and smoke inhalation injury. Am J Respir Crit Med. 2003;167:1021-1026 [PubMed]journal. [CrossRef]
 
Melot C. .Hallemans R. .Naeije R. .Mols P. .Lejeune P. . Deleterious effect of nifedipine on pulmonary gas exchange in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1984;130:612-616 [PubMed]journal. [PubMed]
 
Walmrath D. .Schermuly R. .Pilch J. .Grimminger F. .Seeger W. . Effects of inhaled versus intravenous vasodilators in experimental pulmonary hypertension. Eur Respir J. 1997;10:1084-1092 [PubMed]journal. [CrossRef] [PubMed]
 
Durmowicz A.G. .Hofmeister S. .Kadyraliev T.K. .Aldashev A.A. .Stenmark K.R. . Functional and structural adaptation of the yak pulmonary circulation to residence at high altitude. J Appl Physiol (1985). 1993;74:2276-2285 [PubMed]journal. [PubMed]
 
Newman J.H. .Holt T.N. .Hedges L.K. .et al High-altitude pulmonary hypertension in cattle (brisket disease): candidate genes and gene expression profiling of peripheral blood mononuclear cells. Pulm Circ. 2011;1:462-469 [PubMed]journal. [CrossRef] [PubMed]
 
Glover G.H. .Newsou L. . Further studies on brisket disease. J Agricultural Res. 1918;15:409- [PubMed]journal
 
Grover R.F. . Pulmonary circulation in animals and man at high altitude. Ann NY Acad Sci. 1965;127:632-639 [PubMed]journal. [PubMed]
 
Anand I.S. .Harris E. .Ferrari R. .Pearce P. .Harris P. . Pulmonary haemodynamics of the yak, cattle, and cross breeds at high altitude. Thorax. 1986;41:696-700 [PubMed]journal. [CrossRef] [PubMed]
 
Will D.H. .Hicks J.L. .Card C.S. .Alexander A.F. . Inherited susceptibility of cattle to high-altitude pulmonary hypertension. J Appl Physiol. 1975;38:491-494 [PubMed]journal. [PubMed]
 
Newman J.H. .Holt T.N. .Cogan J.D. .et al Increased prevalence of EPAS1 variant in cattle with high-altitude pulmonary hypertension. Nature Commun. 2015;6:6863- [PubMed]journal. [CrossRef]
 
Groves B.M. .Droma T. .Sutton J.R. .et al Minimal hypoxic pulmonary hypertension in normal Tibetans at 3,658 m. J Appl Physiol (1985). 1993;74:312-318 [PubMed]journal. [PubMed]
 
Peñaloza D. .Sime F. .Banchero N. .Gamboa R. .Cruz J. .Marticorena E. . Pulmonary hypertension in healthy men born and living at high altitudes. Am J Cardiol. 1963;11:150-157 [PubMed]journal. [CrossRef]
 
Bhagi S. .Srivastava S. .Singh S.B. . High-altitude pulmonary edema: review. J Occup Health. 2014;56:235-243 [PubMed]journal. [CrossRef] [PubMed]
 
Bartsch P. .Mairbaurl H. .Swenson E.R. .Maggiorini M. . High altitude pulmonary oedema. Swiss Med Wkly. 2003;133:377-384 [PubMed]journal. [PubMed]
 
Dehnert C. .Mereles D. .Greiner S. .et al Exaggerated hypoxic pulmonary vasoconstriction without susceptibility to high altitude pulmonary edema. High Alt Med Biol. 2015;16:11-17 [PubMed]journal. [CrossRef] [PubMed]
 
Deem S. .Hedges R.G. .Kerr M.E. .Swenson E.R. . Acetazolamide reduces hypoxic pulmonary vasoconstriction in isolated perfused rabbit lungs. Respir Physiol. 2000;123:109-119 [PubMed]journal. [CrossRef] [PubMed]
 
Maggiorini M. . High altitude-induced pulmonary oedema. Cardiovasc Res. 2006;72:41-50 [PubMed]journal. [CrossRef] [PubMed]
 
Oelz O. .Maggiorini M. .Ritter M. .et al Nifedipine for high altitude pulmonary oedema. Lancet. 1989;2:1241-1244 [PubMed]journal. [PubMed]
 
Ang S.O. .Chen H. .Hirota K. .et al Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nat Genet. 2002;32:614-621 [PubMed]journal. [CrossRef] [PubMed]
 
Hickey M.M. .Richardson T. .Wang T. .et al The von Hippel-Lindau Chuvash mutation promotes pulmonary hypertension and fibrosis in mice. J Clin Invest. 2010;120:827-839 [PubMed]journal. [CrossRef] [PubMed]
 
Smith T.G. .Brooks J.T. .Balanos G.M. .et al Mutation of von Hippel-Lindau tumour suppressor and human cardiopulmonary physiology. PLoS Med. 2006;3:e290- [PubMed]journal. [CrossRef] [PubMed]
 
Archer S.L. .Marsboom G. .Kim G.H. .et al Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation. 2010;121:2661-2671 [PubMed]journal. [CrossRef] [PubMed]
 
Jin W.S. .Kong Z.L. .Shen Z.F. .Jin Y.Z. .Zhang W.K. .Chen G.F. . Regulation of hypoxia inducible factor-1alpha expression by the alteration of redox status in HepG2 cells. J Exp Cancer Res. 2011;30:61- [PubMed]journal. [CrossRef]
 
Archer S.L. .Gomberg-Maitland M. .Maitland M.L. .Rich S. .Garcia J.G. .Weir E.K. . Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1alpha-Kv1.5 oxygen-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol. 2008;294:H570-H578 [PubMed]journal. [CrossRef] [PubMed]
 
NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543