0
Topics in Practice Management |

The Pulmonary Hypertension Consult: Clinical and Coding Considerations FREE TO VIEW

Jason S. Fritz, MD; K. Akaya Smith, MD
Author and Funding Information

Drs Fritz and Smith contributed equally to the conception, design, and drafting of the manuscript regarding intellectual content.

Department of Medicine, Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA

CORRESPONDENCE TO: Jason S. Fritz, MD, Penn Medicine University City, 3737 Market St, 10th Floor, Philadelphia, PA 19104


Copyright 2016, American College of Chest Physicians. All Rights Reserved.


Chest. 2016;150(3):705-713. doi:10.1016/j.chest.2016.05.010
Text Size: A A A
Published online

Pulmonary hypertension (PH) is an increasingly recognized cause of morbidity and mortality, and in the past 20 years, there has been a rapid expansion in research and available therapies. Although it is defined quite simply as a mean pulmonary arterial pressure of ≥ 25 mm Hg, PH encompasses a heterogeneous group of disease processes. In the past, PH was classified as primary or secondary, but as understanding of the various contributing diseases has increased, classification systems have attempted to group these diseases by clinical features and disease mechanism. The evaluation of patients with suspected PH can be cumbersome, and a careful and methodical approach is needed to ensure timely and accurate diagnosis, correct physiological classification, and appropriate treatment. In this review, we discuss the classification and diagnostic evaluation of PH in adults as well as some of the billing and coding considerations involved in this evaluation.

Figures in this Article

The finding of elevated pulmonary arterial pressure (PAP), as indicated or suggested by various clinical tests performed for the evaluation of cardiopulmonary symptoms, is a common occurrence in contemporary clinical practice. The clinical implications of this finding span the spectrum from simple outpatient follow-up with minimal additional testing to urgent admission for the initiation of parenteral prostacyclin to rescue life-threatening right ventricular failure. The diagnostic evaluation of elevated PAP can be complex and time-consuming, depending on the clinical context. In this article, we aim to provide a practical overview of the diagnostic approach to the patient with apparent elevated PAP, with a focus on clinical risk stratification and, when appropriate, aspects of coding for documentation and billing purposes.

It is important to recognize that the finding of elevated PAP on noninvasive testing is not synonymous with a diagnosis of pulmonary hypertension (PH). PH is strictly defined by hemodynamic criteria, specifically, a mean PAP of ≥ 25 mm Hg. An elevated PAP may or may not be associated with PH at right-sided heart catheterization (RHC). Herein, PAP refers to a noninvasively derived measurement of pulmonary pressure (typically from two-dimensional echocardiography [2DE]), as distinct from PH, which implies a directly measured value from RHC.

Hemodynamically, mean pulmonary pressure (mPAP) is equal to the product of pulmonary blood flow (Qp) and pulmonary vascular resistance (PVR), added to the outflow pressure (in practice, pulmonary artery occlusion pressure [PAOP]), as given by the equation:PH is thus not a specific disease but rather comprises a group of diseases that give rise to elevated mPAP by varied mechanisms. The most recent consensus classification of PH subtypes is provided by the 5th World Symposium convened by the World Health Organization (WHO) in 2013 in Nice, France. This scheme uses the primary hemodynamic and pathophysiological process to divide PH causes into five groups, encompassing a broad range of clinical phenotypes and associated conditions (Table 1). The more specific term pulmonary arterial hypertension (PAH; WHO group 1) is used when an additional criterion signifying normal left-sided cardiac filling pressures has been satisfied (eg, PAOP or left ventricular end-diastolic pressure [LVEDP] ≤ 15 mm Hg), along with PVR > 3 Wood units. PAH thus implies the presence of a pathophysiological process that increases resistance to blood flow through the pulmonary arterial circulation, with most lesions occurring at the level of the small pulmonary arterioles. Over time, this can result in varying degrees of right-sided cardiac insufficiency, which accounts for many of the symptoms, clinical findings, and mortality associated with PH/PAH. PH on the basis of left-sided cardiac disease (from pulmonary venous hypertension [PVH]; WHO group 2) is the most common cause of PH overall, followed by PH related to lung disease (WHO group 3). Chronic thromboembolic PH comprises WHO group 4. Other disorders associated with the development of PH by varied and poorly understood mechanisms that do not fit into the aforementioned groups are classified into WHO group 5.

Table Graphic Jump Location
Table 1 Clinical Classification of PH (WHO, Nice, 2013)

ALK1 = activin receptor-like kinase type 1; BMPR2 = bone morphogenetic protein receptor type 2; CTEPH = Chronic thromboembolic pulmonary hypertension; KCNK3 = potassium channel subfamily K, member 3; PAH = pulmonary arterial hypertension; PCH = pulmonary capillary hemangiomatosis; PH = pulmonary hypertension; PPHN = persistent pulmonary hypertension of the newborn; PVOD = Pulmonary venoocclusive disease; WHO = World Health Organization.

With this complexity, it is crucial to understand that the finding of hemodynamic PH or PAH is not a clinical diagnosis per se but rather indicates the presence of a pathologic condition that requires further investigation. Numerous ancillary tests may be required to identify and refine the most likely contributors and inform the therapeutic approach.

From a documentation standpoint, the International Classification of Diseases, Tenth Revision (ICD-10) is largely incongruous with the WHO clinical classification. Although the ICD-10 was only adopted recently for widespread use in the United States, the code set was devised decades ago, prior to the formulation of the current WHO classification. PH-related ICD-10 codes essentially distinguish only between “primary” and “other secondary” causes of PH, terms that are no longer used by most PH clinicians, as they lack specificity. Exceptions include chronic pulmonary embolism (ie, chronic thromboembolic pulmonary hypertension [CTEPH]; WHO group 4) and kyphoscoliotic heart disease (WHO group 3). For other kinds of group 3 PH, it would be most appropriate to use the “cor pulmonale (chronic)” or “other specified pulmonary heart disease” codes, although historically these terms typically implied the presence of COPD. Table 2 summarizes the PH-related ICD-10 codes. The incongruity between available codes and contemporary clinical classification has implications for both patient care (eg, accurate communication among medical providers, payer approval for the reimbursement of appropriate yet costly therapies) and epidemiological research performed using large databases, wherein mortality or other outcomes analyses based on the biologically relevant WHO classification could be systematically affected by miscoding.

Table Graphic Jump Location
Table 2 ICD-10 Codes Relevant to Documentation of the Cause of PH

See Table 1 legend for expansion of abbreviations.

In modern practice, a diagnosis of PH is often first entertained based on the finding of elevated PAP on 2DE. Most 2DE laboratories report an estimate of pulmonary artery systolic pressure (2DE-PASP) based on the modified Bernoulli equation, which requires an accurate interrogation of the tricuspid regurgitant jet as well as an estimate of right atrial (RA) pressure. A value of 35 to 40 mm Hg is generally accepted as a reasonable cutoff to define abnormal, although this may result in a higher false-positive rate in older patients. Nearly 20% of community dwellers ≥ 45 years of age may display a 2DE-PASP > 35 mm Hg, with higher values observed with increasing age. It is important to recognize that although there is a reasonable linear correlation between 2DE-PASP and invasive PASP,, contemporary studies using Bland-Altman analysis comparing the degree of agreement between paired 2DE-derived and RHC-derived values suggest that approximately 50% of the time, 2DE-PASP overestimates or underestimates true PASP by at least 10 mm Hg,, highlighting the necessity for invasive confirmation with RHC.

2DE provides the opportunity to assess other parameters related to left-sided and right-sided myocardial and valvular function that can help refine the probability that elevated PAP actually represents PH due to PVH or PAH. In general, a preponderance of abnormalities confined to the left side of the heart suggests a substrate for PVH. Conversely, a dilated and dysfunctional right ventricle in the setting of normal-appearing left-sided chambers and valves is highly suspicious for PAH. The finding of a systolic “notch” within the right ventricular (RV) outflow tract Doppler flow velocity envelope strongly predicts an invasive PVR > 3 Wood units. Diastolic dysfunction and heart failure with preserved ejection fraction (HFpEF) is a common clinical problem and cause of PH., A reduced tricuspid annular plane systolic excursion indicates compromised RV longitudinal shortening, with values < 1.8 cm associated with worse prognosis in PAH. The presence of a pericardial effusion also has been associated with a poorer prognosis.,

The finding of elevated PAP combined with findings of RV dilatation and dysfunction, particularly when left-sided abnormalities are minimal or absent, should significantly raise the pretest probability that PAH is present. In this setting, RHC must be pursued for confirmation. The expediency with which this should be performed depends largely on the clinical context. Urgent RHC should be considered in the setting of a rapid progression of symptoms over weeks to months and when any signs of RV failure or systemic hypoperfusion are evident (cool extremities, reduced blood pressure or tachycardia, syncope or near-syncope, chest pain, renal or hepatic insufficiency).

RHC remains the gold standard for confirming the presence, hemodynamic origin, and severity of PH. This is a safe procedure with a 1% to 2% rate of complications. At the University of Pennsylvania, we perform elective RHC as either a same-day procedure or with a brief elective inpatient stay with serial hemodynamic monitoring. The latter approach may provide a more informative trend of a patient’s hemodynamics, given the natural variability inherent to such measurements.

Careful invasive assessment of pulmonary hemodynamics is essential in the evaluation of PH. The key components of this test are listed in Table 3. Although this is the gold standard, there are several potential errors. Hemodynamic measurements should always be taken at end-expiration. Additionally, inaccurate measurement of PAOP may lead to misclassification of a high proportion of patients as having PAH when, in fact, simultaneous measurement of the LVEDP confirms the presence of PVH. In patients in whom there is a high suspicion of left-sided heart disease, a direct measurement of LVEDP may therefore be needed. Finally, cardiac output (CO) is often measured by thermodilution. However, tricuspid regurgitation is quite prevalent in those suspected of having PH; thus thermodilution may underestimate CO, and a Fick determination of CO may be required. If there is a suspicion of HFpEF as a cause of PH, but values of PAOP are normal or borderline, exercise can be performed in an attempt to unmask dynamic elevations in PAOP that occur when CO increases and diastolic filling time is further reduced at higher heart rates. Volume loading (eg, 250-500 mL of normal saline given as a bolus) can also be performed for the same purpose; however, exercise may be more sensitive for the detection of HFpEF. Although there is no formalized consensus, a provocative rise in PAOP to ≥ 20 mm Hg is likely an abnormal response., If exercise hemodynamics are obtained, thermodilution is necessary for measurement of CO unless the catheterization laboratory is capable of direct measurement of oxygen consumption. Although exercise RHC is safe, it can be challenging to complete and interpret even in the most experienced hands. Notably, protocols vary from study to study and institution to institution. At our institution, we use a semisupine cycle ergometer, but protocols also exist for an upright cycle ergometer, treadmill, or arm ergometry. The goal of exercise is to increase the heart rate to 85% of the maximal age-predicted heart rate, as is used in cardiac stress testing. Some hemodynamics, specifically the PAOP, may be difficult to obtain at peak exercise. Further, once collected, the data may be difficult to interpret because of motion artifact caused by exercise. Interpreting representative values at end-expiration is even more crucial with exercise, as respirophasic pleural pressure changes become exaggerated as tidal volumes increase.

Table Graphic Jump Location
Table 3 Pertinent Parameters Obtained at Right-Sided Heart Catheterization for the Evaluation of PH

IVC = inferior vena cava; LVEDP = left ventricular end-diastolic pressure; PA = pulmonary artery; PAOP = pulmonary artery occlusion pressure; PVR = pulmonary vascular resistance; S/D/M = systolic/diastolic/mean; SVC = superior vena cava; Spo2 = peripheral arterial oxygen saturation; SVR = systemic vascular resistance. See Table 1 legend for expansion of other abbreviations.

An acute vasodilator response is observed in approximately 10% of cases of idiopathic PAH but is significantly rarer in other PAH subtypes., A subset of patients can be maintained on prolonged monotherapy with a calcium channel blockers (CCBs), with excellent long-term survival., Importantly, acute vasoreactivity only predicts a potential response to CCBs but not to other PH therapies. A positive acute vasoreactivity test (AVT) is currently defined as a fall in mean PAP by at least 10 mm Hg to an absolute value < 40 mm Hg without a reduction in CO in response to a short-acting pulmonary vasodilator. We use inhaled nitric oxide (20 ppm) or inhaled epoprostenol (50 ng/kg/min nebulized) for 15 to 30 min, with hemodynamic measurements obtained just prior to the onset and conclusion of the test. Intravenous adenosine or epoprostenol can also be used; other vasodilators such as nitroprusside or nitroglycerine are not recommended for AVT. As a general rule, AVT is indicated only in the setting of WHO group I PAH, as there is no evidence of benefit in other populations. Additionally, AVT is not necessary in patients who are not candidates to receive CCBs, such as those in decompensated right-sided heart failure, and it is contraindicated in those with resting systemic hypotension, low a cardiac index, or functional class IV symptoms. If a positive response is observed, the pulmonary artery catheter may be left in place, and a short-acting oral CCB begun, with escalating doses in an attempt to recapitulate the same response. If the hemodynamic effect is reproduced without untoward effects (reduced CO or systemic hypotension), the patient may be started on a course of monotherapy with a CCB and close follow-up. Alternatively, a low-dose CCB may be started on an outpatient basis with close follow-up and careful titration to maximally tolerated doses. The CCB trial is not indicated in patients without acute vasoreactivity or in those with baseline systemic hypotension or low CO, or both, as there is a significant risk of precipitating hemodynamic collapse.

Several CPT codes are relevant when RHC is performed for the evaluation of PH and are summarized in Table 4.

Table Graphic Jump Location
Table 4 CPT Codes for Heart Catheterization Applicable to the Invasive Assessment of PH

AVT = acute vasoreactivity testing. See Table 1 legend for expansion of other abbreviations.

Current guidelines advocate for a comprehensive evaluation aimed at identifying the correct cause and classification of PH with maximal specificity., Many of these tests play pivotal roles in excluding certain categories of pathophysiology. The ventilation/perfusion (V˙ /Q˙ ) scan, for example, is the preferred method for the identification of CTEPH, yet it is significantly underused in clinical practice. However, depending on the clinical context, it may be either impractical or unnecessary (or both) to obtain all recommended tests. For example, a patient with known scleroderma with a normal body mass index, no sleep-related complaints, and a two-dimensional echocardiogram showing significant RV dysfunction without left-sided heart disease likely does not need a formal polysomnogram. Furthermore, in the setting of PAH, delaying definitive hemodynamic characterization and treatment to perform a low-yield test may put the patient at risk for a worse outcome if RV function is deteriorating. In Table 5, we present a brief overview of evaluations to consider, depending on the clinical status of the patient.
Table Graphic Jump Location
Table 5 Ancillary Tests for the Evaluation and Classification of PH

2DE = two-dimensional echocardiography; ANA = antinuclear antibody; BNP = brain natriuretic protein; CPET = cardiopulmonary exercise test; Dlco = diffusion capacity for carbon monoxide; ILD = interstitial lung disease; LFTs = liver function tests; NT-proBNP = N-terminal pro brain natriuretic peptide; PTE = pulmonary thromboendarterectomy; RV = right ventricular; TEE = transesophageal echocardiogram; V˙ /Q˙  = ventilation/perfusion. See Table 1 and 2 legends for expansion of other abbreviations.

Accurate identification of the cause of PH and the extent to which the patient’s physiology is perturbed in relation to right-sided heart function are critical in determining the therapeutic approach. In the following sections, we provide a focused discussion on management based on the cause of PH and how severely the patient is affected. We recognize that this is somewhat of an oversimplification and that there is a spectrum along which patients will fall. A detailed discussion of treatment specifics is beyond the scope of this article, but we refer the reader to other sources summarizing current evidence-based recommendations regarding risk assessment and medical therapy.,,

The Patient With PAH
Patients with PAH will have satisfied hemodynamic criteria for WHO group1 PAH, as discussed previously, and additionally be classified into the appropriate subgroup (eg, idiopathic, associated with scleroderma). The possibility of CTEPH should be assessed by a V˙ /Q˙  scan in all patients suspected of having PAH, as the clinical picture of these distinct diseases may be identical. However, the therapy for CTEPH is preferably surgical and curative in contrast to therapy for PAH. In the early stages of disease, patients may be asymptomatic or manifest only functional limitation with exertion. In the later stages of the disease, they may exhibit frank right-sided heart failure. If there is decompensated RV function with elevated RA pressure and compromised CO, they may have evidence of end-organ dysfunction and syncope, potentially requiring hospitalization. This represents the most dire situation, and immediate institution of treatment directed at rescuing and stabilizing RV function is mandatory. This may include inotropic agents for temporary RV support combined with potent pulmonary vasoactive therapy. For patients with functional class IV symptoms and severely compromised hemodynamics, parenteral prostacyclin is indicated.,, The treatment of these patients is complex, with few absolutes in the guidelines regarding specific therapies. Studies demonstrate that when reevaluated at specialized centers, a high proportion of patients are found to have been misdiagnosed, misclassified, or inappropriately started on PH-specific therapy. Further, fewer than 50% of patients who are classified as functional class IV are appropriately given parenteral prostacyclin therapy. For these reasons, consultation with or referral to a PH center that has the capacity to initiate and maintain such therapies is strongly advised.

For patients with PAH and a more favorable clinical profile (normal or mildly abnormal RA pressure and CO, functional class II or III, stable exercise capacity), and who are not already being treated with vasoactive therapy, nonparenteral agents may be tried initially, with close serial follow-up. Although there are no randomized comparative trials of the currently available agents, emerging data suggest that oral dual-agent combination therapy may be superior to oral single-agent combination therapy in newly diagnosed patients with respect to reducing the risk of clinical events, particularly hospitalization for PAH. It is important to note that although some immediate hemodynamic improvement may be observed in the first 24 to 48 hours after drug initiation, a lack of significant change in hemodynamic parameters does not indicate that a patient will not derive benefit over the longer term; many of the pleiotropic beneficial effects of these therapies relate to their impact on platelet and endothelial function, which may take months to occur. Moreover, with prostacyclins, gradual up-titration of the dose—tailored to the patient’s clinical status and tolerance—is required to achieve maximal benefit.

Non-PAH PH
In a general population, non-PAH PH will be identified with significantly greater frequency than PAH, owing to the relatively higher prevalence of left-sided heart (systolic and diastolic dysfunction, valvular disease) and respiratory (COPD, pulmonary fibrosis, sleep disorders) diseases. In heart disease, identification of an elevated PAOP in association with PH and normal or near-normal PVR defines PVH. When the pretest probability for group 2 PH is not low and the patient manifests signs or symptoms of elevated left-sided heart filling pressures, it may be prudent to defer RHC until the patient has undergone sufficient diuresis, if the clinical circumstances allow. If CTEPH is diagnosed, evaluation of a patient’s suitability for curative surgical intervention (thromboendarterectomy) vs medical therapy should be performed in consultation with experienced centers. In lung disease, PH is found relatively frequently, but typically the hemodynamic derangements are mild to modest (mPAP < 35 mm Hg; PVR < 5 Wood units; preserved CO and RV function). In these instances, the primary goal is to treat the underlying the disease to the extent possible and correct any hypoxemia with supplemental oxygen. It is extremely important to keep in mind that there is no evidence that pulmonary vasoactive therapy provides any benefit in these populations. The “out of proportion” PH phenotype (in which hemodynamics and RV dysfunction more closely resemble those found in PAH) has engendered ongoing controversy, and good-quality evidence regarding the optimal treatment approach in such cases is lacking. Any potential benefits must be weighed against the risks of inducing either decompensated left ventricular failure (in the case of left-sided heart disease) or worsened V˙ /Q˙  matching and hypoxemia (in the case of lung disease). Appropriate referral for an evaluation for transplantation based on the underlying disease should be considered for such patients.

Pulmonary hypertension (PH) is best thought of as a group of diseases rather than one specific disease. PH-specific therapies are largely reserved for patients who have PAH—and to a lesser extent, CTEPH—and should be considered only rarely in other forms of PH. Although the presence of PH may be suggested by noninvasive means, such as the finding of an elevated estimated PASP on 2DE, it is essential that this be confirmed by RHC. PH-specific therapy should never be instituted prior to invasive hemodynamic confirmation. Similarly, CCB therapy should not be offered unless vasodilator responsiveness has been confirmed by AVT. In addition to RHC, a careful and methodical approach is needed to ensure that the patient is appropriately classified. We agree with recommendations by others that PH-related ICD-10 codes be updated to harmonize with the current WHO classification. A delay in diagnosis and therapy for patients with PAH—and inappropriate therapy for those in other WHO groups—may lead to poor patient outcomes.

Financial/nonfinancial disclosures: The authors have reported to CHEST the following: J. S. F's institution has received funding from Actelion for the conduct of multicenter clinical trials in the field of pulmonary arterial hypertension. J. S. F. has received advisory fees from Actelion. K. A. S. has participated in clinical trials funded by Actelion, United Therapeutics, and Gilead and has acted as a consultant for United Therapeutics, Gilead, and Bayer.

Hoeper M.M. .Bogaard H.J. .Condliffe R. .et al Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013;62:D42-D50 [PubMed]journal. [CrossRef] [PubMed]
 
Simonneau G. .Gatzoulis M.A. .Adatia I. .et al Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013;62:D34-D41 [PubMed]journal. [CrossRef] [PubMed]
 
Vachiery J.L. .Adir Y. .Barbera J.A. .et al Pulmonary hypertension due to left heart diseases. J Am Coll Cardiol. 2013;62:D100-D108 [PubMed]journal. [CrossRef] [PubMed]
 
Seeger W. .Adir Y. .Barbera J.A. .et al Pulmonary hypertension in chronic lung diseases. J Am Coll Cardiol. 2013;62:D109-D116 [PubMed]journal. [CrossRef] [PubMed]
 
Kim N.H. .Delcroix M. .Jenkins D.P. .et al Chronic thromboembolic pulmonary hypertension. J Am Coll Cardiol. 2013;62:D92-D99 [PubMed]journal. [CrossRef] [PubMed]
 
Centers for Disease Control and Prevention. International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM).http://www.cdc.gov/nchs/icd/icd10cm.htm. Accessed April 12, 2016.
 
Link J. .Glazer C. .Torres F. .et al International Classification of Diseases coding changes lead to profound declines in reported idiopathic pulmonary arterial hypertension mortality and hospitalizations: implications for database studies. Chest. 2011;139:497-504 [PubMed]journal. [CrossRef] [PubMed]
 
McQuillan B.M. .Picard M.H. .Leavitt M. .et al Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects. Circulation. 2001;104:2797-2802 [PubMed]journal. [CrossRef] [PubMed]
 
Lam C.S. .Borlaug B.A. .Kane G.C. .et al Age-associated increases in pulmonary artery systolic pressure in the general population. Circulation. 2009;119:2663-2670 [PubMed]journal. [CrossRef] [PubMed]
 
Currie P.J. .Seward J.B. .Chan K.L. .et al Continuous wave Doppler determination of right ventricular pressure: a simultaneous Doppler-catheterization study in 127 patients. J Am Coll Cardiol. 1985;6:750-756 [PubMed]journal. [CrossRef] [PubMed]
 
Chan K.L. .Currie P.J. .Seward J.B. .et al Comparison of three Doppler ultrasound methods in the prediction of pulmonary artery pressure. J Am Coll Cardiol. 1987;9:549-554 [PubMed]journal. [CrossRef] [PubMed]
 
Fisher M.R. .Forfia P.R. .Chamera E. .et al Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med. 2009;179:615-621 [PubMed]journal. [CrossRef] [PubMed]
 
Rich J.D. .Shah S.J. .Swamy R.S. .et al Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension: implications for clinical practice. Chest. 2011;139:988-993 [PubMed]journal. [CrossRef] [PubMed]
 
Roberts J.D. .Forfia P.R. . Diagnosis and assessment of pulmonary vascular disease by Doppler echocardiography. Pulm Circ. 2011;1:160-181 [PubMed]journal. [CrossRef] [PubMed]
 
Arkles J.S. .Opotowsky A.R. .Ojeda J. .et al Shape of the right ventricular Doppler envelope predicts hemodynamics and right heart function in pulmonary hypertension. Am J Respir Crit Care Med. 2011;183:268-276 [PubMed]journal. [CrossRef] [PubMed]
 
Lam C.S. .Roger V.L. .Rodeheffer R.J. .et al Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol. 2009;53:1119-1126 [PubMed]journal. [CrossRef] [PubMed]
 
Forfia P.R. .Fisher M.R. .Mathai S.C. .et al Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med. 2006;174:1034-1041 [PubMed]journal. [CrossRef] [PubMed]
 
Eysmann S.B. .Palevsky H.I. .Reichek N. .et al Two-dimensional and Doppler-echocardiographic and cardiac catheterization correlates of survival in primary pulmonary hypertension. Circulation. 1989;80:353-360 [PubMed]journal. [CrossRef] [PubMed]
 
Raymond R.J. .Hinderliter A.L. .Willis P.W. .et al Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol. 2002;39:1214-1219 [PubMed]journal. [CrossRef] [PubMed]
 
Hoeper M.M. .Lee S.H. .Voswinckel R. .et al Complications of right heart catheterization procedures in patients with pulmonary hypertension in experienced centers. J Am Coll Cardiol. 2006;48:2546-2552 [PubMed]journal. [CrossRef] [PubMed]
 
Rich S. .D'Alonzo G.E. .Dantzker D.R. .et al Magnitude and implications of spontaneous hemodynamic variability in primary pulmonary hypertension. Am J Cardiol. 1985;55:159-163 [PubMed]journal. [CrossRef] [PubMed]
 
Halpern S.D. .Taichman D.B. . Misclassification of pulmonary hypertension due to reliance on pulmonary capillary wedge pressure rather than left ventricular end-diastolic pressure. Chest. 2009;136:37-43 [PubMed]journal. [CrossRef] [PubMed]
 
Borlaug B.A. .Nishimura R.A. .Sorajja P. .et al Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010;3:588-595 [PubMed]journal. [CrossRef] [PubMed]
 
Andersen M.J. .Olson T.P. .Melenovsky V. .et al Differential hemodynamic effects of exercise and volume expansion in people with and without heart failure. Circ Heart Fail. 2015;8:41-48 [PubMed]journal. [CrossRef] [PubMed]
 
Herve P. .Lau E.M. .Sitbon O. .et al Criteria for diagnosis of exercise pulmonary hypertension. Eur Respir J. 2015;46:728-737 [PubMed]journal. [CrossRef] [PubMed]
 
Berry N.C. .Manyoo A. .Oldham W.M. .et al Protocol for exercise hemodynamic assessment: performing an invasive cardiopulmonary exercise test in clinical practice. Pulm Circ. 2015;5:610-618 [PubMed]journal. [CrossRef] [PubMed]
 
Keusch S. .Bucher A. .Muller-Mottet S. .et al Experience with exercise right heart catheterization in the diagnosis of pulmonary hypertension: a retrospective study. Multidiscip Respir Med. 2014;9:51- [PubMed]journal. [CrossRef] [PubMed]
 
Sitbon O. .Humbert M. .Jais X. .et al Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation. 2005;111:3105-3111 [PubMed]journal. [CrossRef] [PubMed]
 
Montani D. .Savale L. .Natali D. .et al Long-term response to calcium-channel blockers in non-idiopathic pulmonary arterial hypertension. Eur Heart J. 2010;31:1898-1907 [PubMed]journal. [CrossRef] [PubMed]
 
Rich S. .Kaufmann E. .Levy P.S. . The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N Engl J Med. 1992;327:76-81 [PubMed]journal. [CrossRef] [PubMed]
 
Galie N. .Humbert M. .Vachiery J.L. .et al 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J. 2015;46:903-975 [PubMed]journal. [CrossRef] [PubMed]
 
Preston I.R. .Sagliani K.D. .Roberts K.E. .et al Comparison of acute hemodynamic effects of inhaled nitric oxide and inhaled epoprostenol in patients with pulmonary hypertension. Pulm Circ. 2013;3:68-73 [PubMed]journal. [CrossRef] [PubMed]
 
Galie N. .Ussia G. .Passarelli P. .et al Role of pharmacologic tests in the treatment of primary pulmonary hypertension. Am J Cardiol. 1995;75:55A-62A [PubMed]journal. [CrossRef] [PubMed]
 
American Medical Association CPT Professional Edition 2015.  2015;:- [PubMed] American Medical Association Chicago, ILjournal
 
McLaughlin V.V. .Langer A. .Tan M. .et al Contemporary trends in the diagnosis and management of pulmonary arterial hypertension: an initiative to close the care gap. Chest. 2013;143:324-332 [PubMed]journal. [CrossRef] [PubMed]
 
Minai O.A. .Pandya C.M. .Golish J.A. .et al Predictors of nocturnal oxygen desaturation in pulmonary arterial hypertension. Chest. 2007;131:109-117 [PubMed]journal. [CrossRef] [PubMed]
 
Galie N. .Corris P.A. .Frost A. .et al Updated treatment algorithm of pulmonary arterial hypertension. J Am Coll Cardiol. 2013;62:D60-D72 [PubMed]journal. [CrossRef] [PubMed]
 
Taichman D.B. .Ornelas J. .Chung L. .et al Pharmacologic therapy for pulmonary arterial hypertension in adults: CHEST guideline and expert panel report. Chest. 2014;146:449-475 [PubMed]journal. [CrossRef] [PubMed]
 
Deano R.C. .Glassner-Kolmin C. .Rubenfire M. .et al Referral of patients with pulmonary hypertension diagnoses to tertiary pulmonary hypertension centers: the multicenter RePHerral study. JAMA Intern Med. 2013;173:887-893 [PubMed]journal. [CrossRef] [PubMed]
 
Badesch D.B. .Raskob G.E. .Elliott C.G. .et al Pulmonary arterial hypertension: baseline characteristics from the REVEAL Registry. Chest. 2010;137:376-387 [PubMed]journal. [CrossRef] [PubMed]
 
Galie N. .Barbera J.A. .Frost A.E. .et al Initial use of ambrisentan plus tadalafil in pulmonary arterial hypertension. N Engl J Med. 2015;373:834-844 [PubMed]journal. [CrossRef] [PubMed]
 
Ghofrani H.A. .D'Armini A.M. .Grimminger F. .et al Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med. 2013;369:319-329 [PubMed]journal. [CrossRef] [PubMed]
 

Tables

Table Graphic Jump Location
Table 1 Clinical Classification of PH (WHO, Nice, 2013)

ALK1 = activin receptor-like kinase type 1; BMPR2 = bone morphogenetic protein receptor type 2; CTEPH = Chronic thromboembolic pulmonary hypertension; KCNK3 = potassium channel subfamily K, member 3; PAH = pulmonary arterial hypertension; PCH = pulmonary capillary hemangiomatosis; PH = pulmonary hypertension; PPHN = persistent pulmonary hypertension of the newborn; PVOD = Pulmonary venoocclusive disease; WHO = World Health Organization.

Table Graphic Jump Location
Table 2 ICD-10 Codes Relevant to Documentation of the Cause of PH

See Table 1 legend for expansion of abbreviations.

Table Graphic Jump Location
Table 3 Pertinent Parameters Obtained at Right-Sided Heart Catheterization for the Evaluation of PH

IVC = inferior vena cava; LVEDP = left ventricular end-diastolic pressure; PA = pulmonary artery; PAOP = pulmonary artery occlusion pressure; PVR = pulmonary vascular resistance; S/D/M = systolic/diastolic/mean; SVC = superior vena cava; Spo2 = peripheral arterial oxygen saturation; SVR = systemic vascular resistance. See Table 1 legend for expansion of other abbreviations.

Table Graphic Jump Location
Table 4 CPT Codes for Heart Catheterization Applicable to the Invasive Assessment of PH

AVT = acute vasoreactivity testing. See Table 1 legend for expansion of other abbreviations.

Table Graphic Jump Location
Table 5 Ancillary Tests for the Evaluation and Classification of PH

2DE = two-dimensional echocardiography; ANA = antinuclear antibody; BNP = brain natriuretic protein; CPET = cardiopulmonary exercise test; Dlco = diffusion capacity for carbon monoxide; ILD = interstitial lung disease; LFTs = liver function tests; NT-proBNP = N-terminal pro brain natriuretic peptide; PTE = pulmonary thromboendarterectomy; RV = right ventricular; TEE = transesophageal echocardiogram; V˙ /Q˙  = ventilation/perfusion. See Table 1 and 2 legends for expansion of other abbreviations.

References

Hoeper M.M. .Bogaard H.J. .Condliffe R. .et al Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013;62:D42-D50 [PubMed]journal. [CrossRef] [PubMed]
 
Simonneau G. .Gatzoulis M.A. .Adatia I. .et al Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013;62:D34-D41 [PubMed]journal. [CrossRef] [PubMed]
 
Vachiery J.L. .Adir Y. .Barbera J.A. .et al Pulmonary hypertension due to left heart diseases. J Am Coll Cardiol. 2013;62:D100-D108 [PubMed]journal. [CrossRef] [PubMed]
 
Seeger W. .Adir Y. .Barbera J.A. .et al Pulmonary hypertension in chronic lung diseases. J Am Coll Cardiol. 2013;62:D109-D116 [PubMed]journal. [CrossRef] [PubMed]
 
Kim N.H. .Delcroix M. .Jenkins D.P. .et al Chronic thromboembolic pulmonary hypertension. J Am Coll Cardiol. 2013;62:D92-D99 [PubMed]journal. [CrossRef] [PubMed]
 
Centers for Disease Control and Prevention. International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM).http://www.cdc.gov/nchs/icd/icd10cm.htm. Accessed April 12, 2016.
 
Link J. .Glazer C. .Torres F. .et al International Classification of Diseases coding changes lead to profound declines in reported idiopathic pulmonary arterial hypertension mortality and hospitalizations: implications for database studies. Chest. 2011;139:497-504 [PubMed]journal. [CrossRef] [PubMed]
 
McQuillan B.M. .Picard M.H. .Leavitt M. .et al Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects. Circulation. 2001;104:2797-2802 [PubMed]journal. [CrossRef] [PubMed]
 
Lam C.S. .Borlaug B.A. .Kane G.C. .et al Age-associated increases in pulmonary artery systolic pressure in the general population. Circulation. 2009;119:2663-2670 [PubMed]journal. [CrossRef] [PubMed]
 
Currie P.J. .Seward J.B. .Chan K.L. .et al Continuous wave Doppler determination of right ventricular pressure: a simultaneous Doppler-catheterization study in 127 patients. J Am Coll Cardiol. 1985;6:750-756 [PubMed]journal. [CrossRef] [PubMed]
 
Chan K.L. .Currie P.J. .Seward J.B. .et al Comparison of three Doppler ultrasound methods in the prediction of pulmonary artery pressure. J Am Coll Cardiol. 1987;9:549-554 [PubMed]journal. [CrossRef] [PubMed]
 
Fisher M.R. .Forfia P.R. .Chamera E. .et al Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med. 2009;179:615-621 [PubMed]journal. [CrossRef] [PubMed]
 
Rich J.D. .Shah S.J. .Swamy R.S. .et al Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension: implications for clinical practice. Chest. 2011;139:988-993 [PubMed]journal. [CrossRef] [PubMed]
 
Roberts J.D. .Forfia P.R. . Diagnosis and assessment of pulmonary vascular disease by Doppler echocardiography. Pulm Circ. 2011;1:160-181 [PubMed]journal. [CrossRef] [PubMed]
 
Arkles J.S. .Opotowsky A.R. .Ojeda J. .et al Shape of the right ventricular Doppler envelope predicts hemodynamics and right heart function in pulmonary hypertension. Am J Respir Crit Care Med. 2011;183:268-276 [PubMed]journal. [CrossRef] [PubMed]
 
Lam C.S. .Roger V.L. .Rodeheffer R.J. .et al Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol. 2009;53:1119-1126 [PubMed]journal. [CrossRef] [PubMed]
 
Forfia P.R. .Fisher M.R. .Mathai S.C. .et al Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med. 2006;174:1034-1041 [PubMed]journal. [CrossRef] [PubMed]
 
Eysmann S.B. .Palevsky H.I. .Reichek N. .et al Two-dimensional and Doppler-echocardiographic and cardiac catheterization correlates of survival in primary pulmonary hypertension. Circulation. 1989;80:353-360 [PubMed]journal. [CrossRef] [PubMed]
 
Raymond R.J. .Hinderliter A.L. .Willis P.W. .et al Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol. 2002;39:1214-1219 [PubMed]journal. [CrossRef] [PubMed]
 
Hoeper M.M. .Lee S.H. .Voswinckel R. .et al Complications of right heart catheterization procedures in patients with pulmonary hypertension in experienced centers. J Am Coll Cardiol. 2006;48:2546-2552 [PubMed]journal. [CrossRef] [PubMed]
 
Rich S. .D'Alonzo G.E. .Dantzker D.R. .et al Magnitude and implications of spontaneous hemodynamic variability in primary pulmonary hypertension. Am J Cardiol. 1985;55:159-163 [PubMed]journal. [CrossRef] [PubMed]
 
Halpern S.D. .Taichman D.B. . Misclassification of pulmonary hypertension due to reliance on pulmonary capillary wedge pressure rather than left ventricular end-diastolic pressure. Chest. 2009;136:37-43 [PubMed]journal. [CrossRef] [PubMed]
 
Borlaug B.A. .Nishimura R.A. .Sorajja P. .et al Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010;3:588-595 [PubMed]journal. [CrossRef] [PubMed]
 
Andersen M.J. .Olson T.P. .Melenovsky V. .et al Differential hemodynamic effects of exercise and volume expansion in people with and without heart failure. Circ Heart Fail. 2015;8:41-48 [PubMed]journal. [CrossRef] [PubMed]
 
Herve P. .Lau E.M. .Sitbon O. .et al Criteria for diagnosis of exercise pulmonary hypertension. Eur Respir J. 2015;46:728-737 [PubMed]journal. [CrossRef] [PubMed]
 
Berry N.C. .Manyoo A. .Oldham W.M. .et al Protocol for exercise hemodynamic assessment: performing an invasive cardiopulmonary exercise test in clinical practice. Pulm Circ. 2015;5:610-618 [PubMed]journal. [CrossRef] [PubMed]
 
Keusch S. .Bucher A. .Muller-Mottet S. .et al Experience with exercise right heart catheterization in the diagnosis of pulmonary hypertension: a retrospective study. Multidiscip Respir Med. 2014;9:51- [PubMed]journal. [CrossRef] [PubMed]
 
Sitbon O. .Humbert M. .Jais X. .et al Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation. 2005;111:3105-3111 [PubMed]journal. [CrossRef] [PubMed]
 
Montani D. .Savale L. .Natali D. .et al Long-term response to calcium-channel blockers in non-idiopathic pulmonary arterial hypertension. Eur Heart J. 2010;31:1898-1907 [PubMed]journal. [CrossRef] [PubMed]
 
Rich S. .Kaufmann E. .Levy P.S. . The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N Engl J Med. 1992;327:76-81 [PubMed]journal. [CrossRef] [PubMed]
 
Galie N. .Humbert M. .Vachiery J.L. .et al 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J. 2015;46:903-975 [PubMed]journal. [CrossRef] [PubMed]
 
Preston I.R. .Sagliani K.D. .Roberts K.E. .et al Comparison of acute hemodynamic effects of inhaled nitric oxide and inhaled epoprostenol in patients with pulmonary hypertension. Pulm Circ. 2013;3:68-73 [PubMed]journal. [CrossRef] [PubMed]
 
Galie N. .Ussia G. .Passarelli P. .et al Role of pharmacologic tests in the treatment of primary pulmonary hypertension. Am J Cardiol. 1995;75:55A-62A [PubMed]journal. [CrossRef] [PubMed]
 
American Medical Association CPT Professional Edition 2015.  2015;:- [PubMed] American Medical Association Chicago, ILjournal
 
McLaughlin V.V. .Langer A. .Tan M. .et al Contemporary trends in the diagnosis and management of pulmonary arterial hypertension: an initiative to close the care gap. Chest. 2013;143:324-332 [PubMed]journal. [CrossRef] [PubMed]
 
Minai O.A. .Pandya C.M. .Golish J.A. .et al Predictors of nocturnal oxygen desaturation in pulmonary arterial hypertension. Chest. 2007;131:109-117 [PubMed]journal. [CrossRef] [PubMed]
 
Galie N. .Corris P.A. .Frost A. .et al Updated treatment algorithm of pulmonary arterial hypertension. J Am Coll Cardiol. 2013;62:D60-D72 [PubMed]journal. [CrossRef] [PubMed]
 
Taichman D.B. .Ornelas J. .Chung L. .et al Pharmacologic therapy for pulmonary arterial hypertension in adults: CHEST guideline and expert panel report. Chest. 2014;146:449-475 [PubMed]journal. [CrossRef] [PubMed]
 
Deano R.C. .Glassner-Kolmin C. .Rubenfire M. .et al Referral of patients with pulmonary hypertension diagnoses to tertiary pulmonary hypertension centers: the multicenter RePHerral study. JAMA Intern Med. 2013;173:887-893 [PubMed]journal. [CrossRef] [PubMed]
 
Badesch D.B. .Raskob G.E. .Elliott C.G. .et al Pulmonary arterial hypertension: baseline characteristics from the REVEAL Registry. Chest. 2010;137:376-387 [PubMed]journal. [CrossRef] [PubMed]
 
Galie N. .Barbera J.A. .Frost A.E. .et al Initial use of ambrisentan plus tadalafil in pulmonary arterial hypertension. N Engl J Med. 2015;373:834-844 [PubMed]journal. [CrossRef] [PubMed]
 
Ghofrani H.A. .D'Armini A.M. .Grimminger F. .et al Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med. 2013;369:319-329 [PubMed]journal. [CrossRef] [PubMed]
 
NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
PubMed Articles
The Pulmonary Embolism Response Team: What Is the Ideal Model? Semin Respir Crit Care Med 2017;38(1):51-55.
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543