0
Correspondence |

Lung Density in Extremely Large Healthy Lungs FREE TO VIEW

Leigh M. Seccombe, PhD; Matthew J. Peters, MD; Robert H. Brown, MD; Wayne Mitzner, PhD
Author and Funding Information

FINANCIAL/NONFINANCIAL DISCLOSURES: None declared.

CORRESPONDENCE TO: Leigh M. Seccombe, PhD, Department of Thoracic Medicine, Concord Hospital, Hospital Rd, Concord, NSW 2139, Australia


Copyright 2016, American College of Chest Physicians. All Rights Reserved.


Chest. 2016;149(1):291-292. doi:10.1016/j.chest.2015.10.060
Text Size: A A A
Published online

One of the possible limitations of the study presented by Brown et al recently in CHEST (October 2015) is that the analyzed larger lungs were of subjects with COPD, where alveolar size and density may have been influenced by disease. In this regard, competition free divers who practice glossopharyngeal breathing are a peculiar group to study because they are known to be able to greatly expand their maximal lung volumes but retain their normal baseline lung compliance at functional residual capacity.,

In collaboration, we constructed a chart of the data from Brown et al together with lung size and alveolar density calculations from CT scans previously performed on six competitive free divers, (Fig 1). The range for nonpathologic lung volumes at maximum inspiration is now from approximately 3,000 to 12,000 mL, substantially extending the previously presented curvilinear relationship. These new data extend the range for normal lungs to completely surround the data for the subjects with COPD. These extended data support the notion that people with larger lungs have bigger alveoli and that this anatomic variability in alveolar size between subjects falls along the curved predicted by simple alveolar enlargement. In addition, the proposition by Brown et al that enlarged alveoli with thinner walls might predispose to pneumothorax is also supported by the frequent observation of pneumomediastinum in free divers after maximum lung expansion using glossopharyngeal breathing.,

Figure Jump LinkFigure 1 Brown et al mean lung density (HU) and lung volume continuum. Blue circles = subjects with COPD; gray circles = subjects without COPD; and red circles = additional free diving subjects. HU = Hounsfield unit.Grahic Jump Location

References

Brown R.H. .Wise R.A. .Kirk G. .Drummond M.B. .Mitzner W. . Lung density changes with growth and inflation. Chest. 2015;148:995-1002 [PubMed]journal. [CrossRef] [PubMed]
 
Seccombe L.M. .Rogers P.G. .Mai N. .Wong C.K. .Kritharides L. .Jenkins C.R. . Features of glossopharyngeal breathing in breath-hold divers. J Appl Physiol (1985). 2006;101:799-801 [PubMed]journal. [CrossRef] [PubMed]
 
Loring S.H. .O’Donnell C.R. .Butler J.P. .Lindholm P. .Jacobson F. .Ferrigno M. . Transpulmonary pressures and lung mechanics with glossopharyngeal insufflation and exsufflation beyond normal lung volumes in competitive breath-hold divers. J Appl Physiol (1985). 2007;102:841-846 [PubMed]journal. [PubMed]
 
Seccombe L.M. .Chung S.C. .Jenkins C.R. .et al Lung perfusion and chest wall configuration is altered by glossopharyngeal breathing. Eur Respir J. 2010;36:151-156 [PubMed]journal. [CrossRef] [PubMed]
 
Chung S.C. .Seccombe L.M. .Jenkins C.R. .Frater C.J. .Ridley L.J. .Peters M.J. . Glossopharyngeal insufflation causes lung injury in trained breath-hold divers. Respirology. 2010;15:813-817 [PubMed]journal. [CrossRef] [PubMed]
 

Figures

Figure Jump LinkFigure 1 Brown et al mean lung density (HU) and lung volume continuum. Blue circles = subjects with COPD; gray circles = subjects without COPD; and red circles = additional free diving subjects. HU = Hounsfield unit.Grahic Jump Location

Tables

References

Brown R.H. .Wise R.A. .Kirk G. .Drummond M.B. .Mitzner W. . Lung density changes with growth and inflation. Chest. 2015;148:995-1002 [PubMed]journal. [CrossRef] [PubMed]
 
Seccombe L.M. .Rogers P.G. .Mai N. .Wong C.K. .Kritharides L. .Jenkins C.R. . Features of glossopharyngeal breathing in breath-hold divers. J Appl Physiol (1985). 2006;101:799-801 [PubMed]journal. [CrossRef] [PubMed]
 
Loring S.H. .O’Donnell C.R. .Butler J.P. .Lindholm P. .Jacobson F. .Ferrigno M. . Transpulmonary pressures and lung mechanics with glossopharyngeal insufflation and exsufflation beyond normal lung volumes in competitive breath-hold divers. J Appl Physiol (1985). 2007;102:841-846 [PubMed]journal. [PubMed]
 
Seccombe L.M. .Chung S.C. .Jenkins C.R. .et al Lung perfusion and chest wall configuration is altered by glossopharyngeal breathing. Eur Respir J. 2010;36:151-156 [PubMed]journal. [CrossRef] [PubMed]
 
Chung S.C. .Seccombe L.M. .Jenkins C.R. .Frater C.J. .Ridley L.J. .Peters M.J. . Glossopharyngeal insufflation causes lung injury in trained breath-hold divers. Respirology. 2010;15:813-817 [PubMed]journal. [CrossRef] [PubMed]
 
NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543