0
Topics in Practice Management |

Clinical Applications of Targeted Temperature ManagementApplications of Targeted Temperature Management

Sarah M. Perman, MD; Munish Goyal, MD; Robert W. Neumar, MD, PhD; Alexis A. Topjian, MD; David F. Gaieski, MD
Author and Funding Information

From the Department of Emergency Medicine (Drs Perman and Gaieski), Center for Resuscitation Science, Department of Emergency Medicine (Drs Perman and Gaieski), and Department of Pediatric Critical Care Medicine, Children’s Hospital of Philadelphia (Dr Topjian), Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Department of Emergency Medicine (Dr Goyal), Medstar Health System, Washington Hospital Healthcare System, Washington, DC; and Department of Emergency Medicine (Dr Neumar), University of Michigan School of Medicine, Ann Arbor, MI.

Correspondence to: David F. Gaieski, MD, Center for Resuscitation Science, Department of Emergency Medicine, Perelman School of Medicine at the University of Pennsylvania, 34th and Spruce St, Ground Ravdin, Philadelphia, PA 19104; e-mail: gaieskid@uphs.upenn.edu


Dr Perman is currently at the University of Colorado School of Medicine (Aurora, CO).

Reproduction of this article is prohibited without written permission from the American College of Chest Physicians. See online for more details.


Chest. 2014;145(2):386-393. doi:10.1378/chest.12-3025
Text Size: A A A
Published online

Targeted temperature management (TTM) has been investigated experimentally and used clinically for over 100 years. The initial rationale for the clinical application of TTM, historically referred to as therapeutic hypothermia, was to decrease the metabolic rate, allowing the injured brain time to heal. Subsequent research demonstrated the temperature dependence of diverse cellular mechanisms including endothelial dysfunction, production of reactive oxygen species, and apoptosis. Consequently, modern use of TTM centers on neuroprotection following focal or global neurologic injury. Despite a solid basic science rationale for applying TTM in a variety of disease processes, including cardiac arrest, traumatic brain injury, ischemic stroke, neonatal ischemic encephalopathy, sepsis-induced encephalopathy, and hepatic encephalopathy, human efficacy data are limited and vary greatly from disease to disease. Ten years ago, two landmark investigations yielded high-quality data supporting the application of TTM in comatose survivors of out-of-hospital cardiac arrest. Additionally, TTM has been demonstrated to improve outcomes for neonatal patients with anoxic brain injury secondary to hypoxic ischemic encephalopathy. Trials are currently under way, or have yielded conflicting results in, examining the utility of TTM for the treatment of ischemic stroke, traumatic brain injury, and acute myocardial infarction. In this review, we place TTM in historic context, discuss the pathophysiologic rationale for its use, review the general concept of a TTM protocol for the management of brain injury, address some of the common side effects encountered when lowering human body temperature, and examine the data for its use in diverse disease conditions with in-depth examination of TTM for postarrest care and pediatric applications.

Figures in this Article

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
PubMed Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543