0
Translating Basic Research into Clinical Practice |

Efferocytosis and Lung DiseaseEfferocytosis and Lung Disease

Alexandra L. McCubbrey, BS; Jeffrey L. Curtis, MD
Author and Funding Information

From the Graduate Program in Immunology (Ms McCubbrey and Dr Curtis), and the Division of Pulmonary and Critical Care Medicine (Dr Curtis), Department of Internal Medicine, University of Michigan Health System; and the Pulmonary and Critical Care Medicine Section (Dr Curtis), VA Ann Arbor Healthcare System, Ann Arbor, MI.

Correspondence to: Jeffrey L. Curtis, MD, Pulmonary and Critical Care Medicine Section (506/111G), VA Ann Arbor Healthcare System, 2215 Fuller Rd, Ann Arbor, MI 48105-2303; e-mail: jlcurtis@umich.edu


Funding/Support: This work was supported by the National Institutes of Health [Grants U01 HL098961, R01 HL056309, and R01 HL082480] and by a Research Enhancement Award Program from the Biomedical Laboratory Research and Development Service, Department of Veterans Affairs.

Reproduction of this article is prohibited without written permission from the American College of Chest Physicians. See online for more details.


Chest. 2013;143(6):1750-1757. doi:10.1378/chest.12-2413
Text Size: A A A
Published online

In healthy individuals, billions of cells die by apoptosis each day. Clearance of these apoptotic cells, termed “efferocytosis,” must be efficient to prevent secondary necrosis and the release of proinflammatory cell contents that disrupt tissue homeostasis and potentially foster autoimmunity. During inflammation, most apoptotic cells are cleared by macrophages; the efferocytic process actively induces a macrophage phenotype that favors tissue repair and suppression of inflammation. Several chronic lung diseases, particularly airways diseases such as chronic obstructive lung disease, asthma, and cystic fibrosis, are characterized by an increased lung burden of uningested apoptotic cells. Alveolar macrophages from individuals with these chronic airways diseases have decreased efferocytosis relative to alveolar macrophages from healthy subjects. These two findings have led to the hypothesis that impaired apoptotic cell clearance may contribute causally to sustained lung inflammation and that therapies to enhance efferocytosis might be beneficial. This review of the English-language scientific literature (2006 to mid-2012) explains how such existing therapies as corticosteroids, statins, and macrolides may act in part by augmenting apoptotic cell clearance. However, efferocytosis can also impede host defenses against lung infection. Thus, determining whether novel therapies to augment efferocytosis should be developed and in whom they should be used lies at the heart of efforts to differentiate specific phenotypes within complex chronic lung diseases to provide appropriately personalized therapies.

Figures in this Article

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
PubMed Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543