0
Translating Basic Research into Clinical Practice |

Small Airway Obstruction in COPDSmall Airway Obstruction in COPD: New Insights Based on Micro-CT Imaging and MRI Imaging

James C. Hogg, MD, PhD; John E. McDonough, PhD; Masaru Suzuki, MD, PhD
Author and Funding Information

From the James Hogg Research Centre, The University of British Columbia, Vancouver, BC, Canada.

Correspondence to: James C. Hogg, MD, University of British Columbia James Hogg Research Laboratory, Room 168 Burrard Wing, St. Pauls Hospital, 1081 Burrard St, Vancouver, BC, V6Z1Y6, Canada; email: jim.hogg@hli.ubc.ca.


Dr McDonough is currently pursuing postdoctoral studies at Imperial College London, London, England. Dr Suzuki is currently affiliated with Hokkaido University, Saporro, Japan.

Reproduction of this article is prohibited without written permission from the American College of Chest Physicians. See online for more details.


Chest. 2013;143(5):1436-1443. doi:10.1378/chest.12-1766
Text Size: A A A
Published online

The increase in total cross-sectional area in the distal airways of the human lung enhances the mixing of each tidal breath with end-expiratory gas volume by slowing bulk flow and increasing gas diffusion. However, this transition also favors the deposition of airborne particulates in this region because they diffuse 600 times slower than gases. Furthermore, the persistent deposition of toxic airborne particulates stimulates a chronic inflammatory immune cell infiltration and tissue repair and remodeling process that increases the resistance in airways <2 mm in diameter four to 40-fold in COPD. This increase was originally attributed to lumen narrowing because it increases resistance in proportion to the change in lumen radius raised to the fourth power. In contrast, removal of one-half the number of tubes arranged in parallel is required to double their resistance, and approximately 90% need to be removed to explain the increase in resistance measured in COPD. However, recent reexamination of this problem based on micro-CT imaging indicates that terminal bronchioles are both narrowed and reduced to 10% of the control values in the centrilobular and 25% in the panlobular emphysematous phenotype of very severe (GOLD [Global Initiative for Chronic Obstructive Lung Disease] grade IV) COPD. These new data indicate that both narrowing and reduction in numbers of terminal bronchioles contribute to the rapid decline in FEV1 that leads to severe airway obstruction in COPD. Moreover, the observation that terminal bronchiolar loss precedes the onset of emphysematous destruction suggests this destruction begins in the very early stages of COPD.

Figures in this Article

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
PubMed Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543