0
Translating Basic Research Into Clinical Practice |

Defective Phagocytosis in Airways DiseasePhagocytic Dysfunction and Airways Disease

Louise E. Donnelly, PhD; Peter J. Barnes, DM, FCCP
Author and Funding Information

From Airway Disease, National Heart and Lung Institute, Imperial College London, London, England.

Correspondence to: Louise Donnelly, PhD, Airway Disease, National Heart and Lung Institute, Imperial College London, Dovehouse St, London, SW3 6LY, England; e-mail: l.donnelly@imperial.ac.uk


Reproduction of this article is prohibited without written permission from the American College of Chest Physicians (http://www.chestpubs.org/site/misc/reprints.xhtml).


© 2012 American College of Chest Physicians


Chest. 2012;141(4):1055-1062. doi:10.1378/chest.11-2348
Text Size: A A A
Published online

Maintaining an airway clear of inhaled particles, pathogens, and cellular debris is paramount for lung homeostasis. In healthy individuals, the phagocytes of the innate immune system act as sentinels to patrol the airway and ensure sterility. However, in airways diseases, including asthma, COPD, and cystic fibrosis, there is a propensity for bacterial colonization that may contribute to disease worsening. Evidence suggests that this may be due to dysfunctional phagocytosis. In patients with COPD, phagocytosis of several bacterial species and removal of apoptotic cells (efferocytosis) by alveolar macrophages are significantly reduced; however, these cells can remove inert beads normally. Attenuated phagocytosis is also apparent in monocyte-derived macrophages from the same patients, suggesting an inherent defect in these cells. Reduced expression of cell surface recognition receptors has been suggested as one mechanism for these observations; however, the literature is currently contradictory and requires further clarification. In cystic fibrosis, a similar defect is also observed in both airway neutrophils and macrophages, leading to ineffective bacterial uptake and subsequent killing. In asthma and other airways diseases, there are also reports of defective phagocytosis of bacterial pathogens, although the relevance to disease pathophysiology is not understood. Oxidative stress is emerging as a common mechanism that may be altering both macrophage and neutrophil functions that can be reversed by various antioxidant strategies. The identification of this and other mechanisms underlying phagocyte dysfunction may present novel therapeutic opportunities for the treatment of many of these intractable diseases and improve patient morbidity and mortality.

Figures in this Article

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543