0
Original Research: CRITICAL CARE MEDICINE |

Clara Cell Protein (CC16), a Marker of Lung Epithelial Injury, Is Decreased in Plasma and Pulmonary Edema Fluid From Patients With Acute Lung Injury

Jonathan A. Kropski, MD; Richard D. Fremont, MD; Carolyn S. Calfee, MD; Lorraine B. Ware, MD, FCCP
Author and Funding Information

*From the Division of Allergy, Pulmonary and Critical Care Medicine (Drs. Kropski, Fremont, and Ware), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; and the Department of Medicine and Cardiovascular Research Institute (Dr. Calfee), University of California, San Francisco, San Francisco, CA.

Correspondence to: Lorraine B. Ware, MD, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, 1161 Twenty-First Ave South, Suite T-1218 MCN, Nashville, TN 37232-2650; e-mail: Lorraine.Ware@vanderbilt.edu


This study was supported by National Institutes of Health grant No. HL081332.

The authors have reported to the ACCP that no significant conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article.

Reproduction of this article is prohibited without written permission from the American College of Chest Physicians (www.chestjournal.org/site/misc/reprints.xhtml).

For editorial comment see page 1408


© 2009 American College of Chest Physicians


Chest. 2009;135(6):1440-1447. doi:10.1378/chest.08-2465
Text Size: A A A
Published online

Background:  Acute lung injury (ALI) and ARDS are common clinical syndromes that are underdiagnosed. Clara cell secretory protein (CC16) is an antiinflammatory protein secreted by the Clara cells of the distal respiratory epithelium that has been proposed as a biomarker of lung epithelial injury. We tested the diagnostic and prognostic utility of CC16 in patients with non–trauma-related ALI/ARDS compared to a control group of patients with acute cardiogenic pulmonary edema (CPE).

Methods:  Plasma and pulmonary edema fluid samples were obtained from medical and surgical patients with ALI/ARDS or CPE requiring intubation for mechanical ventilation. The etiology of pulmonary edema was determined using consensus clinical criteria for ALI/ARDS and CPE and the edema fluid-to-plasma protein ratio. Plasma and edema fluid CC16 levels were measured by sandwich enzyme-linked immunosorbent assay. CC16 levels were log transformed for analysis, and comparisons were made by the Student t test or χ2 as appropriate.

Results:  Compared to patients with CPE (n = 9), patients with ALI/ARDS (n = 23) had lower median CC16 levels in plasma (22 ng/mL [interquartile range (IQR), 9 to 44 ng/mL] vs 55 ng/mL [IQR, 18 to 123 ng/mL], respectively; p = 0.053) and pulmonary edema fluid (1,950 ng/mL [IQR, 1,780 to 4,024 ng/mL] vs 4,835 ng/mL [IQR, 2,006 to 6,350 ng/mL], respectively; p = 0.044). Relative to total pulmonary edema fluid protein concentration, the median CC16 level was significantly lower in patients with ALI/ARDS (45 ng CC16/mg total protein [IQR, 4 to 64 ng CC16/mg total protein] vs 120 ng CC16/mg total protein [IQR, 87 to 257 ng CC16/mg total protein], respectively; p = 0.005). Neither plasma nor edema fluid CC16 levels predicted mortality, the number of days of unassisted ventilation, or ICU length of stay.

Conclusion:  CC16 is a promising diagnostic biomarker for helping to discriminate ALI from CPE. Larger scale validation is warranted to better characterize the utility of CC16 in the diagnosis of this underrecognized syndrome.

Figures in this Article

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
PubMed Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543