0
Original Research: CARDIOPULMONARY FUNCTION TESTING |

Simulation System for a Rebreathing Technique To Measure Multiple Cardiopulmonary Function Parameters

Cuneyt Yilmaz, PhD; William W. Chance, MSEE; Robert L. Johnson, Jr, MD, FCCP; Connie C. W. Hsia, MD, FCCP
Author and Funding Information

*From the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX.

Correspondence to: Cuneyt Yilmaz, PhD, Department of Internal Medicine, Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9034; e-mail: cuneyt.yilmaz@utsouthwestern.edu


This study was supported by National Institute of Diabetes and Digestive and Kidney Diseases grant R01 DK063242.

The contents of this article are solely the responsibility of the authors and do not necessarily represent the official views of the National Institute of Diabetes and Digestive and Kidney Diseases or of the National Institutes of Health. The funding sources had no role in the conduct of the study or in the decision to submit the manuscript for publication.

The authors have reported to the ACCP that no significant conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article.

Reproduction of this article is prohibited without written permission from the American College of Chest Physicians (www.chestjournal.org/site/misc/reprints.xhtml).


© 2009 American College of Chest Physicians


Chest. 2009;135(5):1309-1314. doi:10.1378/chest.08-1997
Text Size: A A A
Published online

Background:  We developed a simple method for simulating a rebreathing maneuver to test the accuracy of the apparatus for simultaneous measurement of lung volume, diffusing capacity of the lung for carbon monoxide (Dlco), diffusing capacity of the lung for nitric oxide (Dlno), and pulmonary blood flow (Q̇c).

Methods:  A test gas mixture containing 0.3% methane, 0.3% CO, 0.8% acetylene, 30% O2, and 40 ppm nitric oxide in balance of nitrogen was sequentially diluted with a rebreathing gas mixture containing 0.3% acetylene, 0.3% methane, and 21% O2 in balance of nitrogen in order to simulate the in vivo end-tidal disappearance of the test gas mixture. Simulation of one rebreathing maneuver consisted of at least four serial dilution steps with a performance time of < 5 min. Using this technique, we estimated functional residual capacity, Q̇c, Dlco, and Dlno at various flow rates and dilution ratios (0.95 to 4.04 L, 3.54 to 6.83 L/min, 7.27 to 15.12 mL/min/mm Hg, and 6.51 to 12.00 mL/min/mm Hg, respectively) and verified simulation results against nominal values. The same apparatus also could simulate a single-breath procedure.

Results:  Compared to nominal values, errors in measured values by rebreathing and single-breath Dlco simulation remained < 5% and 7%, respectively. Slopes of the correlations were close to 1.0 (within ± 5% and ± 6.4% in rebreathing and single-breath Dlco simulation studies, respectively).

Conclusion:  The results demonstrate the feasibility of this simulation method for standardizing the experimental measurements obtained by rebreathing and single-breath techniques. Incorporation of these simulation steps enhances the noninvasive assessment of cardiopulmonary function.

Figures in this Article

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543