0
Original Research: PULMONARY PHYSIOLOGY |

Weight Loss via Diet and Exercise Improves Exercise Breathing Mechanics in Obese MenWeight Loss Improves Exercise Breathing Mechanics

Tony G. Babb, PhD; Brenda L. Wyrick, BSN; Paul J. Chase, MEd; Darren S. DeLorey, PhD; Susan G. Rodder, MS; Mabel Y. Feng, MS; Kamalini G. Ranasinghe, MD
Author and Funding Information

From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and the University of Texas Southwestern Medical Center, Dallas, TX.

Correspondence to: T. G. Babb, PhD, Institute for Exercise and Environmental Medicine, 7232 Greenville Ave, Ste 435, Dallas, TX 75231; e-mail: TonyBabb@TexasHealth.org


Funding/Support: This work was supported by an ALA Career Investigator Award, the King Charitable Foundation, the Cain Foundation, and Texas Health Presbyterian Hospital Dallas.

Reproduction of this article is prohibited without written permission from the American College of Chest Physicians (http://www.chestpubs.org/site/misc/reprints.xhtml).


© 2011 American College of Chest Physicians


Chest. 2011;140(2):454-460. doi:10.1378/chest.10-1088
Text Size: A A A
Published online

Background:  Obesity alters breathing mechanics during exercise. Weight loss improves lung function at rest, but the effect of weight loss, especially regional fat loss, on exercise breathing mechanics is unclear. We hypothesized that weight loss, especially a decrease in abdominal fat, would improve breathing mechanics during exercise because of an increase in end-expiratory lung volume (EELV).

Methods:  Nine obese men were studied before and after weight loss (13% ± 8% of total fat weight, mean ± SD). Subjects underwent pulmonary function testing, underwater weighing, fat distribution estimates (MRI), and graded cycle ergometry before and after a 12-week diet and exercise program. In seven men, esophageal and gastric pressures were measured. The effects of weight loss were analyzed at rest, at ventilatory threshold (VTh), and during peak exercise by dependent Student t test, and the relationship among variables was determined by correlation analysis.

Results:  Subjects lost 7.4 ± 4.2 kg of body weight (P < .001), but the distribution of fat remained unchanged. After weight loss, lung volume subdivisions at rest were increased (P < .05) and were moderately associated (P < .05) with changes in chest, waist, and hip circumferences. At VTh, EELV increased, and gastric pressure decreased significantly (P < .05). The changes in waist circumference, hip circumference, BMI, and sum of chest, waist, and hip circumferences were also consistently and significantly correlated (P < .05) with changes in gastric pressure during exercise at VTh.

Conclusions:  Modest weight loss improves breathing mechanics during submaximal exercise in otherwise healthy obese men, which is clinically encouraging. Improvement appears to be related to the cumulative loss of chest wall fat.

Figures in this Article

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
PubMed Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543