0
Original Research: TOBACCO |

Niflumic Acid and AG-1478 Reduce Cigarette Smoke-Induced Mucin Synthesis*: The Role of hCLCA1

Ahmed E. Hegab, PhD; Tohru Sakamoto, MD; Akihiro Nomura, MD; Yukio Ishii, MD; Yuko Morishima, MD; Takashi Iizuka, MD; Takumi Kiwamoto, MD; Yosuke Matsuno, MD; Shinsuke Homma, MD; Kiyohisa Sekizawa, MD
Author and Funding Information

*From the Department of Pulmonary Medicine, Institute of Clinical Medicine, University of Tsukuba, Ibaraki, Japan.

Correspondence to: Tohru Sakamoto, MD, Department of Pulmonary Medicine, Institute of Clinical Medicine, University of Tsukuba, 1–1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan; e-mail: t-saka@md.tsukuba.ac.jp



Chest. 2007;131(4):1149-1156. doi:10.1378/chest.06-2031
Text Size: A A A
Published online

Background: Cigarette smoke induces bronchial mucus secretion. However, the mechanism of this induction is still unidentified. In this study, we investigated the role of the putative calcium-activated chloride channel 1 (CLCA1) and its blocker, niflumic acid, in cigarette smoke-induced mucin synthesis both in vivo and in vitro.

Methods and results: Sprague-Dawley rats were exposed to cigarette smoke for 4 weeks. The CLCA1, epidermal growth factor receptor (EGFR), and MUC5AC expressions were increased in the trachea and lung tissues. Goblet-cell hyperplasia with marked mucin staining was detected in the tracheal and bronchial epithelium. In the human bronchial epithelial cell line NCI-H292, cigarette smoke solution also induced mucin production as well as the RNA and protein expressions of CLCA1, EGFR, and MUC5AC. Both in vivo and in vitro, the induction of MUC5AC and mucin synthesis were inhibited by niflumic acid, and/or a selective EGFR tyrosine kinase inhibitor, AG-1478. Niflumic acid also blocked the epidermal growth factor-induced MUC5AC and mucin staining in the NCI-H292 cell line.

Conclusion: Both EGFR and niflumic acid-sensitive chloride channels (probably CLCA1) are dependently affecting the mucin production as a part of a single complex signaling pathway. CLCA1 may be a key signaling member that can be targeted with pharmacologic interventions to treat mucus hypersecretion.

Figures in this Article

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

CHEST Journal Articles
PubMed Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543