0
Articles |

Redox Activation of Intracellular Calcium Release Channels (Ryanodine Receptors) in the Sustained Phase of Hypoxia-Induced Pulmonary Vasoconstriction*

Wanglei Du, MS; Melissa Frazier, BA; Timothy J. McMahon, MD PhD; Jerry P. Eu, MD
Author and Funding Information

*From the Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, NC.

Correspondence to: Jerry Eu, MD, Division of Pulmonary, Allergy and Critical Care Medicine, PO Box 3168, Duke University Medical Center, Durham, NC 27710; e-mail: eu000001@duke.edu



Chest. 2005;128(6_suppl):556S-558S. doi:10.1378/chest.128.6_suppl.556S
Text Size: A A A
Published online

Hypoxia-induced pulmonary vasoconstriction (HPV) is an important adaptive process that remains incompletely understood. In preconstricted rat pulmonary arteries (inner diameter, 250 to 400 μm), hypoxia (pO2 approximately 10 mm Hg) induces an initial transient phase and a more slowly developing sustained phase of vasoconstriction. Since the release of calcium ions (Ca2+) from intracellular stores by redox-sensitive intracellular Ca2+ release channels known as ryanodine receptors (RyRs) in pulmonary arterial smooth-muscle cells (PASMCs) may play a role in HPV, and considerable evidence now supports that levels of reactive oxygen species (ROS) are paradoxically increased in PASMC under hypoxia, we investigated whether redox activation of RyRs by ROS may transduce HPV. By reverse transcriptase-polymerase chain reaction, we found that all three RyR isoforms are expressed in rat pulmonary arteries and in PASMCs. The sustained phase, but not the transient phase, of HPV can be prevented by pretreating pulmonary arteries with RyR inhibitors ryanodine (200 μmol/L) or dantrolene (50 μmol/L). The addition of dantrolene, ryanodine or the thiol-reducing agent dithiothreitol (1 mmol/L) during the sustained phase of HPV reversed the hypoxic vasoconstriction. In contrast, the superoxide scavenger nitroblue tetrazolium (500 nmol/L) prevented further hypoxic pulmonary vasoconstriction during the sustained phase of HPV but did not reverse it. Taken together, our data suggest that redox activation of RyRs by ROS has an important role in transducing the sustained contraction of pulmonary arteries under hypoxia.

Figures in this Article

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

CHEST Journal Articles
PubMed Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543