0
Articles |

Current Issues in Mechanical Ventilation for Respiratory Failure*

Neil R. MacIntyre, MD
Author and Funding Information

*From the Department of Pulmonary and Critical Care Medicine, Duke University Medical Center, Durham, NC.

Correspondence to: Neil R. MacIntyre, MD, Clinical Chief, Pulmonary and Critical Care Medicine, Duke University Medical Center, Room 7453 Duke Hospital, Box 3911 Medical Center, Durham, NC 27710; e-mail: neil.macintyre@duke.edumc



Chest. 2005;128(5_suppl_2):561S-567S. doi:10.1378/chest.128.5_suppl_2.561S
Text Size: A A A
Published online

The morbidity and mortality associated with respiratory failure is, to a certain extent, iatrogenic. Mechanical ventilation, although the mainstay of treatment for respiratory distress syndrome, can result in physical trauma to lung tissue (ventilator-induced lung injury [VILI]). Strategies to alleviate VILI are often termed lung-protective strategies and are aimed at reducing overstretching and shear stresses associated with repetitive alveolar collapse and reopening. Lower tidal volumes during ventilation, maintenance of positive-end expiratory pressure, and high-frequency ventilation are the best-studied lung-protective strategies that appear to reduce VILI. Faster withdrawal from mechanical ventilation could also improve outcomes and lower the costs associated with care. To enhance the success of weaning from mechanical ventilation, the cooperative efforts of physicians and respiratory therapists are needed. These efforts involve the initiation of spontaneous-breathing trials, implementation of systematic weaning protocols, and optimization of individual patient interventions.

Figures in this Article

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

CHEST Journal Articles
PubMed Articles
Guidelines
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543