0
Exercise and the Heart |

Effect of Moderate-Intensity Exercise, Whole-Body Periodic Acceleration, and Passive Cycling on Nitric Oxide Release Into Circulation*

Marvin A. Sackner, MD; Emerance Gummels, MS; Jose A. Adams, MD
Author and Funding Information

*From the Division of Pulmonary Disease and Critical Medicine (Dr. Sackner) and Department of Neonatology (Dr. Adams), Mount Sinai Medical Center, Miami Beach; and Non-Invasive Monitoring Systems (Ms. Gummels), North Bay Village, FL.

Correspondence to: Marvin A. Sackner, MD, 555 NE 34th St, Miami, FL 33137; e-mail: Artchive@msn.com



Chest. 2005;128(4):2794-2803. doi:10.1378/chest.128.4.2794
Text Size: A A A
Published online

Study objective: To determine if a 3-min bout of moderately intensive supine bicycle exercise, whole-body periodic acceleration (pGz), and passive motorized cycling cause nitric oxide (NO) release into the circulation, as detected by dicrotic notch descent on the diastolic limb of a finger pulse wave.

Participants: Fourteen healthy adults underwent two levels of supine bicycle ergometry that caused heart rate to rise to 56% (light moderate exercise) and 67% (heavy moderate exercise) of maximum predicted heart rate, and a single bout of pGz. Several months later, 9 of the 14 subjects underwent passive motorized cycling.

Methods: The ECG and finger pulse wave were recorded. The dicrotic notch position was computed from the amplitude of the digital pulse wave (a) divided by the height of the dicrotic notch above the end-diastolic level (b) and designated the a/b ratio. Increase of the a/b ratio due to dicrotic notch descent reflects the vasodilator action of NO on resistance vessels. The last 30 s of baseline, exercise or pGz, and recovery periods were analyzed.

Results: Compared to baseline, light moderate exercise produced a nonsignificant rise of the a/b ratio. Both heavy moderate exercise and pGz produced statistically significant rises of peak and mean a/b ratios over baseline. Heavy moderate exercise produced a greater mean a/b ratio than pGz, but the peak a/b ratio did not differ between the two. Episodic rises and falls of a/b ratios were more common during pGz than exercise. Passive motorized cycling did not alter the a/b ratio.

Conclusions: Dicrotic notch descent occurs during a brief bout of moderate cycling exercise, consistent with NO release into circulation. pGz produces comparable descent, but passive motorized cycling does not. In terms of the beneficial effects of NO, this suggests that pGz might serve as a substitute in subjects who are physically incapable of exercising.

Figures in this Article

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

CHEST Journal Articles
PubMed Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543