0
Laboratory and Animal Investigations |

Methodologic Aspects of Attenuation Distributions From Static and Dynamic Thoracic CT Techniques in Experimental Acute Lung Injury*

Jörg Zinserling, MSc; Hermann Wrigge, MD; Peter Neumann, MD, PhD; Thomas Muders, MD; Anders Magnusson, MD, PhD; Göran Hedenstierna, MD, PhD; Christian Putensen, MD, PhD
Author and Funding Information

*From the Department of Anesthesiology and Intensive Care Medicine (Mr. Zinserling, and Drs. Wrigge, Muders, and Putensen), University of Bonn, Bonn, Germany; Department of Anesthesiology and Intensive Care Medicine (Dr. Neumann), University of Göttingen, Göttingen, Germany; and Departments of Radiology (Dr. Magnusson) and Clinical Physiology (Dr. Hedenstierna), University of Uppsala, Uppsala, Sweden.

Correspondence to: Jörg Zinserling, MSc, Department of Anesthesiology and Intensive Care Medicine, University of Bonn, D–53105, Bonn, Germany; e-mail jzinserling@uni-bonn.de



Chest. 2005;128(4):2963-2970. doi:10.1378/chest.128.4.2963
Text Size: A A A
Published online

Background: In acute lung injury, thoracic CT is used to gain information about lung aeration and consolidation. This can be done either during breath-holding by spiral CT scanning of the entire lung or dynamically by scanning lung slices without interrupting ventilation. We hypothesized that attenuation distribution is dependent on static or dynamic scanning techniques. We also studied whether a variation in the CT cut level, corresponding to the diaphragm movement over a breath, had any effect on the attenuation distribution.

Methods: Twenty-two pigs with oleic acid-induced lung injury were randomly assigned to receive pressure-controlled mechanical ventilation with or without spontaneous breathing. Transversal dynamic CT scans of the chest were performed in apical and juxtadiaphragmatic regions, and end-expiratory and end-inspiratory slices were selected. In addition, after clamping the tube at end-expiration and end-inspiration, respectively, spiral CTs were performed. Guided by morphologic structures, spiral CT slices matching the dynamic scan slice and three additional neighbored slices above the diaphragm were selected. Distributions of CT attenuation were calculated and summarized in ranges for comparison.

Results: No significant difference in attenuation distributions between the two scanning methods or an interaction with the factors ventilation mode, ventilation phase, and attenuation range were found. In addition, attenuation distributions of four neighbored juxtadiaphragmatic slices, 8 mm thick, from the spiral CT did not differ statistically.

Conclusion: In an animal model of oleic acid-induced lung injury, analyses of transverse thoracic slices based on dynamic or static CT scanning showed comparable distributions of attenuation. Variations on the CT cut level of 24 mm had no significant effect on the distribution of Hounsfield unit numbers. CT attenuation distributions of transversal juxtadiaphragmatic slices were not dependent on exact position.

Figures in this Article

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

CHEST Journal Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543