0
Clinical Investigations: CARDIOLOGY |

Association of Polymorphisms in Pulmonary Surfactant Protein A1 and A2 Genes With High-Altitude Pulmonary Edema*

Shweta Saxena, MSc; Ratan Kumar, PhD; Taruna Madan, PhD; Vanita Gupta, BSc; Kambadur Muralidhar, PhD; Puranam U. Sarma, PhD
Author and Funding Information

From the Institute of Genomics and Integrative Biology (Ms. Saxena and Drs. Madan and Sarma), Delhi, India; Defence Institute of Physiology and Allied Sciences (Dr. Kumar and Ms. Gupta), Delhi, India; and the Department of Zoology (Dr. Muralidhar), University of Delhi, Delhi, India.

Correspondence to: Ratan Kumar, PhD, Defense Institute of Physiology and Allied Science, Lucknow Rd, Timarpur, Delhi 110054, India; e-mail: rk_dipas@yahoo.com



Chest. 2005;128(3):1611-1619. doi:10.1378/chest.128.3.1611
Text Size: A A A
Published online

Study objectives: A potential pathogenetic cofactor for the development of high-altitude pulmonary edema (HAPE) is an increase in capillary permeability, which could occur as a result of an inflammatory reaction and/or free-radical-mediated injury to the lung. Pulmonary surfactant protein A (SP-A), the most abundant surfactant protein, has potent antioxidant properties and protects unsaturated phospholipids and growing cells from oxidative injury. Single-nucleotide polymorphisms (SNPs) in SP-A1 and SP-A2, genes encoding SP-A, have been associated with susceptibility to respiratory distress syndrome, COPD, and pulmonary infections. In view of the protective role of SP-A against inflammatory reactions and oxidative damage, the two underlying mechanisms in development of HAPE, we examined the association of constitutional susceptibility to HAPE with polymorphisms in SP-A1 and SP-A2.

Design: A cross-sectional case-control study.

Setting: Blood samples were collected at an altitude (≥ 3,500 m).

Participants: Twelve low-altitude native (LAN) subjects with a history of HAPE, 15 healthy LAN sojourners without a history of HAPE (LAN control subjects), and 19 healthy high-altitude natives (HANs) without a history of HAPE (HAN control subjects).

Measurements: The SNPs in four exons and intermediate introns of the SP-A1 and SP-A2 were screened by polymerase chain reaction and sequencing. Biochemical parameters related to oxidative stress (malondialdehyde and reduced glutathione in RBC) and membrane permeability (circulating levels of lactate dehydrogenase) were measured in plasma.

Results: Allele frequencies of three loci in SP-A1 and one in SP-A2 were significantly different between LAN HAPE patients (SP-A1 C1101T: C allele, 36.4% and T allele, 63.6%; SP-A1 T3192C: T allele, 61.1% and C allele, 38.9%; SP-A1 T3234C: T allele, 61.1% and C allele, 38.9%; and SP-A2 A3265C: A allele, 21.4% and C allele, 78.6%) and LAN control subjects (SP-A1 C1101T: C allele, 8.3% and T allele, 91.7%; SP-A1 T3192C: T allele, 15% and C allele, 85%; SP-A1 T3234C: T allele, 15% and C allele, 85%; and SP-A2 A3265C: A allele, 37.5% and C allele, 62.5%) [C1101T odds ratio [OR], 6.3 with 95% confidence interval (CI), 2.8 to 14.3; T3192C OR, 8.9 with 95% CI, 4.5 to 17.6; T3234C OR, 8.9 with 95% CI, 4.5 to 17.6; and A3265C OR, 2.2 with 95% CI, 1.2 to 4.1 (p ≤ 0.01)]. Heterozygous individuals, with respect to SP-A1 C1101T and SP-A2 A3265C, showed less severity in oxidative damage in comparison with homozygous subjects (SP-A1 T1101 and SP-A2 C3265).

Conclusion: The polymorphisms in SP-A1 (C1101T, T3192C, and T3234C) and SP-A2 (A3265C) might be one of the genetic factors contributing to susceptibility to HAPE.

Figures in this Article

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

CHEST Journal Articles
PubMed Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543