0
Clinical Investigations: DIFFUSE DISEASES |

Decreased Pulmonary Perfusion in Pulmonary Vein Stenosis After Radiofrequency Ablation*: Assessment With Dynamic Magnetic Resonance Perfusion Imaging

Alexander Kluge, MD; Thorsten Dill, MD; Okan Ekinci, MD; Jochen Hansel, MD; Christian Hamm, MD; Heinz F. Pitschner, MD; Georg Bachmann, MD
Author and Funding Information

*From the Departments of Diagnostic Radiology (Drs. Kluge and Bachmann) and Cardiology (Drs. Dill, Ekinci, Hansel, Hamm, and Pitschner), Kerckhoff Heart Center, Bad Nauheim, Germany.

Correspondence to: Alexander Kluge, MD, Department of Diagnostic Radiology, Kerckhoff Heart Center, Benekestrasse 2–8, 61231 Bad Nauheim, Germany; e-mail: alexander.kluge@kerckhoff.med.uni-giessen.de



Chest. 2004;126(2):428-437. doi:10.1378/chest.126.2.428
Text Size: A A A
Published online

Study objectives: The functional impact of pulmonary vein (PV) stenosis on pulmonary perfusion after radiofrequency ablation (RFA) for atrial fibrillation (AF) has not been systematically evaluated previously. Therefore, we correlated magnetic resonance (MR) pulmonary perfusion imaging with single-photon emission CT (SPECT) perfusion and with the degree of PV stenosis (PVS) apparent on MR angiography (MRA) after RF ablation.

Setting: Joint radiology-cardiology collaborative magnetic resonance unit at the Kerckhoff Heart Center.

Design and patients: This was a cohort study of 110 patients who were routinely examined by MRA after RFA for AF, whereby 51 patients with a PV diameter reduction of > 25% or with clinical symptoms (ie, dyspnea and cough) were enrolled into the study. Patients were examined at follow-up by MR perfusion imaging and MRA, and the results were compared to those from patients who underwent SPECT scanning and from a control group of 26 untreated patients. Twelve patients underwent PVS dilatation as well as 22 sequential follow-up examinations.

Methods: Pulmonary perfusion was evaluated using a dynamic contrast-enhanced three-dimensional MR perfusion sequence (1.5 T, 2.5-s temporal resolution, and 0.05 cm spatial resolution), and high-resolution, contrast-enhanced MRA was performed to measure PV diameter. PV dilatation was performed using an angioplasty catheter that was 8 to 10 mm in diameter.

Results: The localization and extent of perfusion defects measured by MRI or SPECT scanning were precisely matched. MR perfusion imaging detected 20 of 21 perfusion defects (sensitivity, 95.2%; specificity, 100%). PVSs and perfusion deficits correlated closely and showed the following threshold: perfusion decreased substantially in PVs ≤ 6 mm in diameter (21 of 25 areas; 84.0%) compared to 2 of 180 areas (1.1%) with PVs > 6 mm in diameter. After PVS dilatation, perfusion was restored partially after weeks, and complete normalization was seen in 4 of 12 patients (33%).

Conclusions: PVSs caused severe perfusion deficits, which were reliably demonstrated by MR perfusion imaging. Clinical symptoms correlated better with MR perfusion than they did with MRA. The combination with MRA to assess underlying PVS allowed a “one-stop-shopping” MRI procedure to be carried out. The results led to alterations of RFA techniques, and therefore MRA and MR perfusion imaging may be beneficial in patient follow-up and in evaluating new ablation techniques.

Figures in this Article

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
PubMed Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543