0
Clinical Investigations in Critical Care |

Clinical and Laboratory Features of Severe Acute Respiratory Syndrome Vis-À-Vis Onset of Fever*

Ching-Lung Liu, MD; Yen-Ta Lu, MD, PhD; Meng-Jen Peng, MD; Pei-Jan Chen, MD; Rong-Luh Lin, MD; Chien-Liang Wu, MD; Hsu-Tah Kuo, MD, FCCP
Author and Funding Information

*From the Department of Internal Medicine (Drs. Liu, Peng, Chen, Lin, Wu, and Kuo), Division of Chest Medicine, and the Department of Medical Research (Dr. Lu), Mackay Memorial Hospital, Taipei, Taiwan.

Correspondence to: Hsu-Tah Kuo, MD, FCCP, Division of Chest Medicine, Department of Internal Medicine, Mackay Memorial Hospital 92, Section 2, Chung-Shan North Rd, Taipei, Taiwan; e-mail: kuohsu@ms2.mmh.org.tw



Chest. 2004;126(2):509-517. doi:10.1378/chest.126.2.509
Text Size: A A A
Published online

Study objectives: Severe acute respiratory syndrome (SARS) is a rapidly progressive disease caused by a novel coronavirus (CoV) infection. However, the disease presentation is nonspecific. The aim of this study was to define clearly the presentation, clinical progression, and laboratory data in a group of patients who had SARS.

Design: Retrospective observational study.

Setting: A tertiary care medical center with 51 negative-pressure isolation rooms in Taipei, Taiwan.

Patients: Fifty-three patients with SARS seen between April 27 and June 16, 2003.

Results: Fever (ie, temperature > 38°C) was the most common symptom (98%) and the earliest. When admitted to the isolation unit of the hospital for observation, most patients reported nonspecific symptoms associated with their fever. Only two patients with preexisting illnesses had cough on the same day the fever began. Eventually, 39 patients (74%) developed cough, beginning at a mean (± SD) time of 4.5 ± 1.9 days after fever onset, and 35 patients (66%) had diarrhea beginning at a mean time of 6.0 ± 3.3 days after fever onset. Thirty-one patients (59%) had abnormal findings on chest radiographs on hospital admission, and all but 1 patient (98%) eventually developed lung infiltrates that were consistent with pneumonia. The majority of patients (63%) first developed unifocal infiltrates at a mean time of 4.5 ± 2.1 days after fever onset, while in 37% of patients the initial infiltrates were multifocal, appearing at a mean time of 5.8 ± 1.3 days after fever onset. Common laboratory findings included lymphopenia (on hospital admission, 70%; during hospitalization, 95%), thrombocytopenia (on hospital admission, 28%; during hospitalization, 40%), elevated lactate dehydrogenase (on hospital admission, 58%; during hospitalization, 88%), creatine kinase (on hospital admission, 18%; during hospitalization, 32%), and aspartate aminotransferase or alanine aminotransferase levels (on hospital admission, 27%; during hospitalization, 62%). Throat or nasopharyngeal swab for SARS-CoV by reverse transcriptase polymerase chain reaction (PCR) and real-time PCR was positive in 40 of the 47 patients (85%) in whom the test was performed.

Conclusions: None of the presenting symptoms or laboratory findings are pathognomonic for SARS. Even though cough developed in a majority of patients, it did not occur until later in the disease course, suggesting that a cough preceding or concurrent with the onset of fever is less likely to indicate SARS. While PCR for SARS-CoV appears to be the best early diagnostic test currently available, it is clear that better methods are needed to differentiate between SARS and non-SARS illness on initial presentation.

Figures in this Article

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
Acute Febrile Respiratory Illness in the ICU*: Reducing Disease Transmission
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543