0
Clinical Investigations: CARDIOLOGY |

Cerebral Oxygenation During Exercise in Cardiac Patients*

Akira Koike; Haruki Itoh; Reiko Oohara; Masayo Hoshimoto; Akihiko Tajima; Tadanori Aizawa; Long Tai Fu
Author and Funding Information

*From The Cardiovascular Institute, Tokyo, Japan.

Correspondence to: Akira Koike, MD, The Cardiovascular Institute, 3-10, Roppongi 7-chome, Minato-ku, Tokyo 106-0032, Japan;e-mail: koike@cepp.ne.jp



Chest. 2004;125(1):182-190. doi:10.1378/chest.125.1.182
Text Size: A A A
Published online

Background: Until recently, compensatory mechanisms have been believed to regulate adequately cerebral blood flow in humans. However, this has been called into question by a series of new investigations suggesting that patients with left ventricular dysfunction suffer from cerebral hypoperfusion. We compared cerebral oxygenation during incremental exercise between patients with valvular heart disease and normal subjects.

Methods: Thirty-three patients with valvular disease and 33 normal subjects performed a symptom-limited incremental exercise test using a cycle ergometer. Oxyhemoglobin at the forehead was continuously monitored during exercise using near-infrared spectroscopy. Respiratory gas measurements were performed on a breath-by-breath basis.

Results: The increase in oxyhemoglobin during exercise was significantly lower in the patients with valvular disease than in normal subjects. The change in oxyhemoglobin during exercise (ΔO2Hb) at the forehead was negatively correlated with the slope of the increase in minute ventilation to the increase in carbon dioxide output (ΔV̇e/ΔV̇co2), and positively correlated with the peak oxygen uptake (V̇o2), gas exchange threshold (GET), and slope of the increase in V̇o2 to the increase in the work rate (ΔV̇o2/ΔWR). Among the patients with valvular disease, 15 patients showed a decrease in oxyhemoglobin at the forehead during exercise. When compared with the patients with increased oxyhemoglobin, those with decreased levels exhibited a higher ΔV̇e/ΔV̇co2 and a lower peak V̇o2, GET, and ΔV̇o2/ΔWR.

Conclusions: The present findings strongly suggest that cerebral oxygenation during exercise is dependent on the cardiovascular and pulmonary systems. The study also indicated the presence of cerebral hypoperfusion during exercise in cardiac patients whose cardiac output fails to increase normally.

Figures in this Article

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543