0
Articles |

The Protein C Pathway*

Charles T. Esmon, PhD
Author and Funding Information

*Investigator, Howard Hughes Medical Institute, Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK.

Correspondence to: Charles T. Esmon, PhD, Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK 73104; e-mail: Charles-Esmon@omrf.ouhsc.edu



Chest. 2003;124(3_suppl):26S-32S. doi:10.1378/chest.124.3_suppl.26S
Text Size: A A A
Published online

The protein C anticoagulant pathway serves as a major system for controlling thrombosis, limiting inflammatory responses, and potentially decreasing endothelial cell apoptosis in response to inflammatory cytokines and ischemia. The essential components of the pathway involve thrombin, thrombomodulin, the endothelial cell protein C receptor (EPCR), protein C, and protein S. Thrombomodulin binds thrombin, directly inhibiting its clotting and cell activation potential while at the same time augmenting protein C (and thrombin activatable fibrinolysis inhibitor [TAFI]) activation. Furthermore, thrombin bound to thrombomodulin is inactivated by plasma protease inhibitors > 20 times faster than free thrombin, resulting in increased clearance of thrombin from the circulation. The inhibited thrombin rapidly dissociates from thrombomodulin, regenerating the anticoagulant surface. Thrombomodulin also has direct anti-inflammatory activity, minimizing cytokine formation in the endothelium and decreasing leukocyte-endothelial cell adhesion. EPCR augments protein C activation approximately 20-fold in vivo by binding protein C and presenting it to the thrombin-thrombomodulin activation complex. Activated protein C (APC) retains its ability to bind EPCR, and this complex appears to be involved in some of the cellular signaling mechanisms that down-regulate inflammatory cytokine formation (tumor necrosis factor, interleukin-6). Once APC dissociates from EPCR, it binds to protein S on appropriate cell surfaces where it inactivates factors Va and VIIIa, thereby inhibiting further thrombin generation. Clinical studies reveal that deficiencies of protein C lead to microvascular thrombosis (purpura fulminans). During severe sepsis, a combination of protein C consumption, protein S inactivation, and reduction in activity of the activation complex by oxidation, cytokine-mediated down-regulation, and proteolytic release of the activation components sets in motion conditions that would favor an acquired defect in the protein C pathway, which in turn favors microvascular thrombosis, increased leukocyte adhesion, and increased cytokine formation. APC has been shown clinically to protect patients with severe sepsis. Protein C and thrombomodulin are in early stage clinical trials for this disease, and each has distinct potential advantages and disadvantages relative to APC.

Figures in this Article

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Topics

protein c

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
PubMed Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543