0
Clinical Investigations: COPD |

Exercise Training Improves Exertional Dyspnea in Patients With COPD*: Evidence of the Role of Mechanical Factors

Francesco Gigliotti; Claudia Coli; Roberto Bianchi; Isabella Romagnoli; Barbara Lanini; Barbara Binazzi; Giorgio Scano
Author and Funding Information

*From Fondazione Don C. Gnocchi, IRCCS, Pozzolatico, Firenze.

Correspondence to: Francesco Gigliotti, MD, Section of Pulmonary Rehabilitation, Fondazione Don C. Gnocchi, IRCCS, Via Imprunetana 124, 50020 Pozzolatico, Firenze, Italy; e-mail: fgigliotti@dongnocchi.it



Chest. 2003;123(6):1794-1802. doi:10.1378/chest.123.6.1794
Text Size: A A A
Published online

Background: To our knowledge, no data have been reported on the effects of exercise training (EXT) on central respiratory motor output or neuromuscular coupling (NMC) of the ventilatory pump, and their potential association with exertional dyspnea. Accurate assessment of these important clinical outcomes is integral to effective management of breathlessness of patients with COPD.

Material and methods: Twenty consecutive patients with stable moderate-to-severe COPD were tested at 6-week intervals at baseline, after a nonintervention control period (pre-EXT), and after EXT. Patients entered an outpatient pulmonary rehabilitation program involving regular exercise on a bicycle. Incremental symptom-limited exercise testing (1-min increments of 10 W) was performed on an electronically braked cycle ergometer. Oxygen uptake (V̇o2), carbon dioxide output (V̇co2), minute ventilation (V̇e), time, and volume components of the respiratory cycle and, in six patients, esophageal pressure swings (Pessw), both as actual values and as percentage of maximal (most negative in sign) esophageal pressure during sniff maneuver (Pessn), were measured continuously over the runs. Exertional dyspnea and leg effort were evaluated by administering a Borg scale.

Results: Measurements at baseline and pre-EXT were similar. Significant increase in exercise capacity was found in response to EXT: (1) peak work rate (WR), V̇o2, V̇co2, V̇e, tidal volume (Vt), and heart rate increased, while peak exertional dyspnea and leg effort did not significantly change; (2) exertional dyspnea/V̇o2 and exertional dyspnea/V̇co2 decreased while V̇e/V̇o2 and V̇e/V̇co2 remained unchanged. The slope of both exertional dyspnea and leg effort relative to V̇e fell significantly after EXT; (3) at standardized WR, V̇e, and V̇co2, exertional dyspnea and leg effort decreased while inspiratory capacity (IC) increased. Decrease in V̇e was accomplished primarily by decrease in respiratory rate (RR) and increase in both inspiratory time (Ti) and expiratory time; Vt slightly increased, while inspiratory drive (Vt/Ti) and duty cycle (Ti/total time of the respiratory cycle) remained unchanged. The decrease in Pessw and the increase in Vt were associated with lower exertional dyspnea after EXT; (4) at standardized V̇e, Vt, RR, and IC, Pessw and Pessw(%Pessn)/Vt remained unchanged while exertional dyspnea and leg effort decreased with EXT.

Conclusion: In conclusion, increases in NMC, aerobic capacity, and tolerance to dyspnogenic stimuli and possibly breathing retraining are likely to contribute to the relief of both exertional dyspnea and leg effort after EXT.

Figures in this Article

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
PubMed Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543