0
Laboratory and Animal Investigations |

Fourteen-Membered Ring Macrolides Inhibit Vascular Cell Adhesion Molecule 1 Messenger RNA Induction and Leukocyte Migration*: Role in Preventing Lung Injury and Fibrosis in Bleomycin-Challenged Mice*

YingJi Li, MD, PhD; Arata Azuma, MD, PhD; Satoru Takahashi, MD, PhD; Jiro Usuki, MD, PhD; Kuniko Matsuda; Akinori Aoyama; Shoji Kudoh, MD, PhD
Author and Funding Information

*From the Fourth Department of Internal Medicine (Drs. Li, Azuma, Usuki, Matsuda, Aoyama, and Kudoh), Nippon Medical School, Tokyo; and Institute of Basic Medical Sciences (Dr. Takahashi), University of Tsukuba, Ibaragi, Japan.

Correspondence to: Arata Azuma, MD, PhD, Fourth Department of Internal Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113, Japan; e-mail: a-azuma@nms.ac.jp



Chest. 2002;122(6):2137-2145. doi:10.1378/chest.122.6.2137
Text Size: A A A
Published online

Background and objective: Although the pathogenesis of interstitial pneumonia and pulmonary fibrosis are not well understood, it has been reported that inflammatory cells, especially neutrophils, and the injurious substances produced by them play important roles in the progression of interstitial pneumonia and subsequent fibrosis. Erythromycin and other 14-membered ring macrolides (14-MRMLs) have been reported to improve the survival of patients with diffuse panbronchiolitis by antineutrophil and several other anti-inflammatory mechanisms. The present study was undertaken to investigate the effects of 14-MRMLs on an experimental model of bleomycin-induced acute lung injury and subsequent fibrosis in mice.

Methods: Bleomycin was administered IV to ICR mice. At 28 days after bleomycin injection, fibrotic foci were histologically observed in left lung tissues, and hydroxyproline content in right lung tissues was chemically analyzed. The inhibitory effects of 14-MRMLs were assessed by overall comparison between control (normal saline solution [NS] alone), untreated (bleomycin alone), and treated (bleomycin plus 14-MRMLs) groups. For evaluation of early-phase inflammation, cell populations in BAL fluid and induction of messenger RNA (mRNA) of adhesion molecules (E-selectin, P-selectin, intercellular adhesion molecule 1 [ICAM-1], and vascular cell adhesion molecule 1 [VCAM-1]) in lung tissues were examined at 0 to 13 days after bleomycin treatment. These parameters were also compared with those for the control (NS alone), 14-MRML untreated (bleomycin alone), and 14-MRML pretreated (bleomycin plus 14-MRML pretreated) groups.

Results: Bleomycin-induced pulmonary fibrosis was inhibited by erythromycin and other 14-MRMLs on day 28 after bleomycin injection in ICR mice, especially those pretreated with 14-MRMLs. Hydroxyproline content in lung tissues was also decreased in the 14-MRML-pretreated groups. The number of neutrophils in BAL fluid significantly increased, with two peaks at 1 day and 9 days (from 6 to 11 days) after bleomycin administration. 14-MRMLs significantly inhibited both peaks of neutrophil infiltration into the airspace. Changes in mRNA expression of adhesion molecules (E-selectin, P-selectin, ICAM-1, VCAM-1) were associated with leukocyte migration into the airspace. 14-MRMLs clearly inhibited the induction of VCAM-1 mRNA, and tended to attenuate that of ICAM-1 mRNA, but inhibited the induction of neither E-selectin mRNA nor P-selectin mRNA.

Conclusion: These findings indicate that attenuation of inflammatory cell migration into the airspace by 14-MRMLs, especially of neutrophils and macrophages, resulted in inhibition of lung injury and subsequent fibrosis. 14-MRMLs clearly attenuated the expression of VCAM-1 mRNA during the early phase of bleomycin-induced lung injury, and this might be one mechanism of inhibition of neutrophil and macrophage migration into the airspace by 14-MRMLs. This may be one mechanism of the anti-inflammatory and antifibrotic effects of 14-MRMLs. These findings suggest that prophylactic administration of 14-MRMLs may be clinically efficacious in preventing acute exacerbation of interstitial pneumonia and acute lung injury.

Figures in this Article

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
PubMed Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543