0
Laboratory and Animal Investigations |

Ventilating With Tracheal Gas Insufflation and Periodic Tracheal Occlusion During Sleep and Wakefulness*

Y. Tagaito, MD; H. Schneider, MD, PhD; C.P. O’Donnell, PhD; P.L. Smith, MD; Alan R. Schwartz, MD
Author and Funding Information

*From the Department of Anesthesiology (Dr. Tagaito), Chiba University School of Medicine, Chiba, Japan; and the Division of Pulmonary and Critical Care Medicine (Drs. Schneider, O’Donnell, Smith, and Schwartz), Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.

Correspondence to: Alan R. Schwartz, MD, Room 4B59, Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224; e-mail: aschwar2@jhmi.edu



Chest. 2002;122(5):1742-1750. doi:10.1378/chest.122.5.1742
Text Size: A A A
Published online

Introduction: The current invasive and noninvasive methods for delivering long-term ventilatory support rely on cumbersome patient interfaces that may interfere with upper airway function. To overcome these limitations, a novel system was developed to ventilate conscious, spontaneously breathing dogs through a self-contained cuffed cannula that was used for tracheal gas insufflation (TGI) and periodic tracheal occlusion (PTO). We hypothesized that TGI + PTO would provide greater ventilatory support than would TGI alone and that its effect would be more pronounced during sleep than wakefulness.

Methods: Chronically tracheostomized dogs were monitored for sleep (ie, EEG, electro- oculogram, and nuchal electromyogram) and breathing (ie, tracheal pressure [Ptr] and upper airway flow via snout mask). A thin transtracheal cannula housed within a cuffed tracheostomy tube was used for TGI and PTO monitoring. V̇e, gas exchange, and breathing patterns were examined during sleep and wakefulness at baseline (ie, no TGI) and during the application of TGI alone (at 5, 10, and 15 L/min) and the application of TGI + PTO.

Results: Compared to baseline breathing without TGI, TGI at 5, 10, and 15 L/min decreased minute ventilation without influencing Paco2. In contrast, TGI + PTO led to progressive increases in ventilation, positive Ptr swings, and decreases in Paco2 as the flow rate was increased during sleep and wakefulness. Moreover, spontaneous breathing efforts ceased during TGI + PTO at flow rates of 10 and 15 L/min during wakefulness, and at all flow rates during sleep.

Conclusions: The findings indicate that TGI + PTO can fully support ventilation in a spontaneously breathing canine model during sleep and wakefulness. Its streamlined interface could ultimately prove to be clinically significant, once technical concerns are addressed.

Figures in this Article

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
PubMed Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543