0
Occupational and Environmental Lung Disease |

Effect of Occupational Silica Exposure on Pulmonary Function*

Vicki Stover Hertzberg, PhD; Kenneth D. Rosenman, MD; Mary Jo Reilly, MS; Carol H. Rice, SM, PhD, CIH
Author and Funding Information

*From the Department of Biostatistics (Dr. Hertzberg), Emory University, Atlanta, GA; the Department of Medicine (Dr. Rosenman and Ms. Reilly), Michigan State University, East Lansing, MI; and the Department of Environmental Health (Dr. Rice), University of Cincinnati, Cincinnati, OH.

Correspondence to: Vicki Stover Hertzberg, PhD, Department of Biostatistics, Rollins School of Public Health, Emory University, 1518 Clifton Rd, NE, Atlanta, GA 30322; e-mail: vhertzb@sph. emory.edu



Chest. 2002;122(2):721-728. doi:10.1378/chest.122.2.721
Text Size: A A A
Published online

Study objectives: To assess the effect of occupational silica exposure on pulmonary function.

Design: Epidemiologic evaluation based on employee interview, plant walk-through, and information abstracted from company medical records, employment records, and industrial hygiene measurements.

Participants: Drawn from 1,072 current and former hourly wage workers employed before January 1, 1986. Thirty-six individuals with radiographic evidence of parenchymal changes consistent with asbestosis or silicosis were excluded. In addition, eight individuals whose race was listed as other than white or black were excluded.

Measurements and results: Analysis of spirometry data (FVC, FEV1, FEV1/FVC) only using the test results that met American Thoracic Society criteria for reproducibility and acceptability shows decreasing percent-predicted FVC and FEV1 and decreasing FEV1/FVC in relationship to increasing silica exposure among smokers. Logistic regression analyses of abnormal FVC and abnormal FEV1 values (where abnormal is defined as < 95% confidence limit for predicted using the Knudson prediction equations) show odds ratios of 1.49 and 1.68, respectively, for occurrence of abnormal result with 40 years of exposure at the Occupational Safety and Health Administration (OSHA)-allowable level of 0.1 mg/m3. Longitudinal analyses of FVC and FEV1 measurements show a 1.6 mL/yr and 1.1 mL/yr, respectively, decline per milligram/cubic meter mean silica exposure (p = 0.011 and p = 0.001, respectively). All analyses were adjusted for weight, height, age, ethnicity, smoking status, and other silica exposures. Systematic problems leading to measurement error were possible, but would have been nondifferential in effect and not related to silica measurements.

Conclusions: There is a consistent association between increased pulmonary function abnormalities and estimated measures of cumulative silica exposure within the current allowable OSHA regulatory level. Despite concerns about the quality control of the pulmonary function measurements use in these analyses, our results support the need to lower allowable air levels of silica and increase efforts to encourage cessation of cigarette smoking among silica-exposed workers.


Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
PubMed Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543