0
Articles |

Acute Lung Injury*: Functional Genomics and Genetic Susceptibility

George D. Leikauf, PhD; Susan A. McDowell, PhD; Scott C. Wesselkamper, MS; William D. Hardie, MD; John E. Leikauf; Thomas R. Korfhagen, MD, PhD; Daniel R. Prows, PhD
Author and Funding Information

*From the Departments of Environmental Health, Pediatrics, & Medicine, University of Cincinnati, Cincinnati, OH; and the Divisions of Pulmonary Biology, Developmental Biology, Information Services, and Pulmonary Medicine, Children’s Hospital Medical Center, Cincinnati, OH.

Correspondence to: George D. Leikauf, PhD, Director, Molecular Toxicology Division, Department of Environmental Health, University of Cincinnati, PO Box 670056, Cincinnati, OH 45267-0056; e-mail: leikaugd@uc.edu



Chest. 2002;121(3_suppl):70S-75S. doi:10.1378/chest.121.3_suppl.70S
Text Size: A A A
Published online

Initiated by numerous factors, acute lung injury is marked by epithelial and endothelial cell perturbation and inflammatory cell influx that leads to surfactant disruption, pulmonary edema, and atelectasis. This syndrome has been associated with a myriad of mediators including cytokines, oxidants, and growth factors. To better understand gene-environmental interactions controlling this complex process, the sensitivity of inbred mouse strains was investigated following acute lung injury that was induced by fine nickel sulfate aerosol. Measuring survival time, protein and neutrophil concentrations in BAL fluid, lung wet-to-dry weight ratio, and histology, we found that these responses varied between inbred mouse strains and that susceptibility is heritable. To assess the progression of acute lung injury, the temporal expression of genes and expressed sequence tags was assessed by complementary DNA microarray analysis. Enhanced expression was noted in genes that were associated with oxidative stress, antiprotease function, and extracellular matrix repair. In contrast, expression levels of surfactant proteins (SPs) and Clara cell secretory protein (ie, transcripts that are constitutively expressed in the lung) decreased markedly. Genome-wide analysis was performed with offspring derived from a sensitive and resistant strain (C57BL/6xA F1 backcrossed with susceptible A strain). Significant linkage was identified for a locus on chromosome 6 (proposed as Aliq4), a region that we had identified previously following ozone-induced acute lung injury. Two suggestive linkages were identified on chromosomes 1 and 12. Using haplotype analysis to estimate the combined effect of these regions (along with putative modifying loci on chromosomes 9 and 16), we found that five loci interact to account for the differences in survival time of the parental strains. Candidate genes contained in Aliq4 include SP-B, aquaporin 1, and transforming growth factor-α. Thus, the functional genomic approaches of large gene set expression (complementary DNA microarray) and genome-wide analyses continue to provide novel insights into the genetic susceptibility of lung injury.


Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Figures

Tables

References

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

MEMBER & INDIVIDUAL SUBSCRIBER

Want Access?

NEW TO CHEST?

Become a CHEST member and receive a FREE subscription as a benefit of membership.

Individuals can purchase this article on ScienceDirect.

Individuals can purchase a subscription to the journal.

Individuals can purchase a subscription to the journal or buy individual articles.

Learn more about membership or Purchase a Full Subscription.

INSTITUTIONAL ACCESS

Institutional access is now available through ScienceDirect and can be purchased at myelsevier.com.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Find Similar Articles
CHEST Journal Articles
PubMed Articles
  • CHEST Journal
    Print ISSN: 0012-3692
    Online ISSN: 1931-3543